# Sylow theorems

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Three theorems on maximal $p$-subgroups in a finite group, proved by L. Sylow [1] and playing a major role in the theory of finite groups. Sometimes the union of all three theorems is called Sylow's theorem.

Let $G$ be a finite group of order $p^ms$, where $p$ is a prime number not dividing $s$. Then the following theorems hold.

Sylow's first theorem: $G$ contains subgroups of order $p^i$ for all $i=1,\ldots,m$; moreover, each subgroup of order $p^{i-1}$ is a normal subgroup in at least one subgroup of order $p^i$. This theorem implies, in particular, the following important results: there is in $G$ a Sylow subgroup of order $p^m$; any $p$-subgroup of $G$ is contained in some Sylow $p$-subgroup of order $p^m$; the index of a Sylow $p$-subgroup is not divisible by $p$; if $G=P$ is a group of order $p^m$, then any of its proper subgroups is contained in some maximal subgroup of order $p^{m-1}$ and all maximal subgroups of $P$ are normal.

Sylow's second theorem: All Sylow $p$-subgroups of a finite group are conjugate.

For infinite groups the analogous result is, in general, false.

Sylow's third theorem: The number of Sylow $p$-subgroups of a finite group divides the order of the group and is congruent to one modulo $p$.

For arbitrary sets $\pi$ of prime numbers, analogous theorems have been obtained only for finite solvable groups (see Hall subgroup). For non-solvable groups the situation is different. For example, in the alternating group $A_5$ of degree 5, for $\pi=\{2,3\}$ there is a Sylow $\pi$-subgroup $S$ of order 6 whose index is divisible by a number from $\pi$. In addition, in $A_5$ there is a Sylow $\pi$-subgroup isomorphic to $A_4$ and not conjugate with $S$. The number of Sylow $\pi$-subgroups in $A_5$ does not divide the order of $A_5$.

#### References

 [1] L. Sylow, "Théorèmes sur les groupes de substitutions" Math. Ann. , 5 (1872) pp. 584–594 Zbl 04.0056.02 [2] M. Hall, "Group theory" , Macmillan (1959)
How to Cite This Entry:
Sylow theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sylow_theorems&oldid=53575
This article was adapted from an original article by V.D. Mazurov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article