Schur determinant lemma

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 15A15 [MSN][ZBL]

A formula for the determinant of a matrix in block form. Let the $2n \times 2n$ matrix $M$ be partitioned into $n \times n$ blocks, $$ M = \left({ \begin{array}{cc} P & Q \\ R & S \end{array} }\right) \ . $$

Then the determinant $$ \det M = \det (PS - RQ) \ . $$


  • Zhang, Fuzhen (ed.) The Schur complement and its applications, Numerical Methods and Algorithms 4 Springer (2005) ISBN 0-387-24271-6 Zbl 1075.15002
How to Cite This Entry:
Schur determinant lemma. Encyclopedia of Mathematics. URL: