Regular group
There are several (different) notions of regularity in group theory. Most are not intrinsic to a group itself, but pertain to a group acting on something.
Contents
Regular group of permutations.
Let be a finite group acting on a set
, i.e. a permutation group (group of permutations). The permutation group
is said to be regular if for all
,
, the stabilizer subgroup at
, is trivial.
In the older mathematical literature, and in physics, a slightly stronger notion is used: is transitive (i.e., for all
there is a
such that
) and
, where
is the number of elements of
and
is, of course, the number of elements of
. It is easy to see that a transitive regular permutation group satisfies this condition. Inversely, a transitive permutation group for which
is regular.
A permutation is regular if all cycles in its canonical cycle decomposition have the same length. If is a transitive regular permutation group, then all its elements, regarded as permutations on
, are regular permutations.
An example of a transitive regular permutation group is the Klein -group
of permutations of
.
The regular permutation representation of a group defined by left (respectively, right) translation
(respectively,
) exhibits
as a regular permutation group on
.
Regular group of automorphisms.
Let act on a group
by means of automorphisms (i.e., there is given a homomorphism of groups
,
,
).
is said to act fixed-point-free if for all
there is a
such that
, i.e. there is no other global fixed point except the obvious and necessary one
. There is a conjecture that if
acts fixed-point-free on
and
, then
is solvable, [a7]; see also Fitting length for some detailed results in this direction.
is said to be a regular group of automorphisms of
if for all
only the identity element of
is left fixed by
, i.e.
for all
. Some authors use the terminology "fixed-point-free" for the just this property.
Regular
-group.
A -group is said to be regular if
, where
is an element of the commutator subgroup of the subgroup generated by
and
, i.e.
is a product of iterated commutators of
and
. See [a5].
References
[a1] | K. Doerk, T. Hawkes, "Finite soluble groups" , de Gruyter (1992) pp. 16 |
[a2] | W. Ledermann, A.J. Weir, "Introduction to group theory" , Longman (1996) pp. 125 (Edition: Second) |
[a3] | M. Hall Jr., "The theory of groups" , Macmillan (1963) pp. 183 |
[a4] | M. Hamermesh, "Group theory and its applications to physical problems" , Dover, reprint (1989) pp. 19 |
[a5] | R.D. Carmichael, "Groups of finite order" , Dover, reprint (1956) pp. 54ff |
[a6] | L. Dornhoff, "Group representation theory. Part A" , M. Dekker (1971) pp. 65 |
[a7] | B. Huppert, N. Blackburn, "Finite groups III" , Springer (1982) pp. Chap. X |
Regular group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regular_group&oldid=11804