##### Actions

generalized measure, real valued measure

2010 Mathematics Subject Classification: Primary: 28A33 [MSN][ZBL] $\newcommand{\abs}[1]{\left|#1\right|}$

A classical theorem in measure theory first established by J. Radon and O.M. Nikodym, which has the following statement.

Let $\mathcal{B}$ be a $\sigma$-algebra of subsets of a set $X$ and let $\mu$ and $\nu$ be two measures on $\mathcal{B}$. If $\nu$ is absolutely continuous with respect to $\mu$, i.e. $\nu (A)=0$ whenever $\mu (A) = 0$, then there is a $\mathcal{B}$-measurable nonnegative function $f$ such that $$\label{e:R-N} \nu (B) = \int_B f\, d\mu \qquad \forall B\in \mathcal{B}\, .$$ The function $f$ is uniquely determined up to sets of $\mu$-measure zero. The theorem can be generalized to signed measures, $\mathbb C$-valued measures and, more in general, vector-valued measures (see Signed measure). More precisely, let $\mu$ be a (nonnegative real-valued) measure on $\mathcal{B}$, $V$ be a finite-dimensional vector-space and $\nu:\mathcal{B}\to V$ a $\sigma$-additive function such that $\nu (A) = 0$ whenever $\mu (A) =0$. Then there is a function $f\in L^1 (\mu, V)$ such that \ref{e:R-N} hold. See also Vector measure for more general statements.

#### References

 [AmFuPa] L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001 [Bo] N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001 [DS] N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523 [Bi] P. Billingsley, "Convergence of probability measures" , Wiley (1968) MR0233396 Zbl 0172.21201 [He] E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) [Ma] P. Mattila, "Geometry of sets and measures in euclidean spaces". Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. MR1333890 Zbl 0911.28005 [Ni] O. M. Nikodym, "Sur une généralisation des intégrales de M. J. Radon". Fund. Math. , 15 (1930) pp. 131–179 [Ra] J. Radon, "Ueber lineare Funktionaltransformationen und Funktionalgleichungen", Sitzungsber. Acad. Wiss. Wien , 128 (1919) pp. 1083–1121
How to Cite This Entry: