Quadrature of the circle

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 51M04 [MSN][ZBL]

The problem of constructing a square of equal area as the given circle; one of the classical Ancient problems on constructions with a ruler and compass. The side of a square equal in area to a circle of radius $r$ has length $r\sqrt\pi$. Thus the problem of the quadrature of the circle reduces to the following: To construct a line of length $\sqrt\pi$. Such a construction cannot be realized with a ruler and compass since $\pi$ is a transcendental number, as was proved in 1882 by F. Lindemann. However, the problem of the quadrature of a circle is solvable if one extends the means of construction, for example, by using certain transcendental curves, called quadratrices (cf. Quadratrix).


[1] Yu.I. Manin, "Ueber die Lösbarkeit von Konstruktionsaufgaben mit Zirkel und Lineal" , Enzyklopaedie der Elementarmathematik , 4. Geometrie , Deutsch. Verlag Wissenschaft. (1969) pp. 205–230 (Translated from Russian)


The Ancient problem of squaring the circle led to a problem in measure theory which asks if a disc and a square of equal area are equi-decomposable, i.e. if the disc can be decomposed into a finite number of disjoint subsets which can be reassembled to form a square, [a6]. Cf. Tarski problem for results on this problem.


[a1] L. Bieberbach, "Theorie der geometrischen Konstruktionen" , Birkhäuser (1952)
[a2] F. Klein, et al., "Famous problems and other monographs" , Chelsea, reprint (1962) (Translated from German)
[a3] I. Stewart, "Galois theory" , Chapman & Hall (1973) pp. Chapt. 5
[a4] B.L. van der Waerden, "Science awakening" , 1 , Noordhoff (1975) (Translated from Dutch)
[a5] U. Dudley, "A budget of trisections" , Springer (1987)
[a6] S. Wagon, "Circle squaring in the twentieth century" Math. Intelligencer , 3 : 4 (1981) pp. 176–181
[a7] E.W. Hobson, "Squaring the circle" , Squaring the circle and other monographs , Chelsea, reprint (1953)
[a8] O. Perron, "Irrationalzahlen" , de Gruyter (1960)
[a9] W.W.R. Ball, H.S.M. Coxeter, "Mathematical recreations and essays" , Dover, reprint (1987) pp. 347–359
How to Cite This Entry:
Quadrature of the circle. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by E.G. Sobolevskaya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article