Namespaces
Variants
Actions

Difference between revisions of "Projective representations of symmetric and alternating groups"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 80 formulas out of 84 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
The classification of the projective representations of a [[Finite group|finite group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301301.png" /> (cf. also [[Projective representation|Projective representation]]) was obtained by I. Schur [[#References|[a9]]], [[#References|[a10]]], who showed that over the complex field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301302.png" /> the problem of determining all projective representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301303.png" /> can be reduced to determining the linear representations of stem extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301304.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301305.png" />, called representation groups, by its Schur multiplier <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301306.png" /> (cf. also [[Schur multiplicator|Schur multiplicator]]). A standard reference is [[#References|[a5]]].
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
In the case of the symmetric groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301307.png" /> and the alternating groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301308.png" /> (cf. also [[Symmetric group|Symmetric group]]; [[Alternating group|Alternating group]]), Schur [[#References|[a11]]] further showed that
+
Out of 84 formulas, 80 were replaced by TEX code.-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p1301309.png" /></td> </tr></table>
+
{{TEX|semi-auto}}{{TEX|partial}}
 +
The classification of the projective representations of a [[Finite group|finite group]] $G$ (cf. also [[Projective representation|Projective representation]]) was obtained by I. Schur [[#References|[a9]]], [[#References|[a10]]], who showed that over the complex field $\mathbf{C}$ the problem of determining all projective representations of $G$ can be reduced to determining the linear representations of stem extensions $\tilde { G }$ of $G$, called representation groups, by its Schur multiplier $M ( G )$ (cf. also [[Schur multiplicator|Schur multiplicator]]). A standard reference is [[#References|[a5]]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013010.png" /></td> </tr></table>
+
In the case of the symmetric groups $S _ { n }$ and the alternating groups $A _ { n }$ (cf. also [[Symmetric group|Symmetric group]]; [[Alternating group|Alternating group]]), Schur [[#References|[a11]]] further showed that
  
The representation groups are not unique, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013011.png" /> there are two for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013012.png" />; however, to determine the projective representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013013.png" /> it suffices to consider one of these, which will be denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013014.png" />; similarly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013015.png" /> is a representation group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013016.png" />. The non-linear representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013018.png" />, that is, those representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013019.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013022.png" /> is the generator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013023.png" /> are called spin representations. Schur [[#References|[a10]]] classified the complex irreducible spin representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013026.png" /> (and also the remaining non-linear projective representations for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013028.png" />). Although more complicated, the classification of the spin representations follows the corresponding results for the linear representations of these groups. (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]). A standard reference is [[#References|[a4]]], but see also [[#References|[a12]]].
+
\begin{equation*} M ( S _ { n } ) \cong \left\{ \begin{array} { l l } { \mathbf{Z} _ { 2 } } &amp; { \text { if } n \geq 4, } \\ { \{ e \} } &amp; { \text { if } n &lt; 4, } \end{array} \right. \end{equation*}
  
In this case, the irreducible spin representations are parametrized by the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013029.png" /> of strict partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013030.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013031.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013033.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013034.png" />) denotes the subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013035.png" /> where the number of even parts is even (odd), then a complete list of irreducible spin representations is:
+
\begin{equation*} M ( A _ { n } ) \cong \left\{ \begin{array} { l l } { \mathbf Z _ { 2 } } &amp; { \text { if } n \geq 4 , n \neq 6,7, } \\ { \mathbf Z _ { 6 } } &amp; { \text { if } n = 6,7, } \\ { \{ e \} } &amp; { \text { if } n &lt; 4. } \end{array} \right. \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013036.png" /></td> </tr></table>
+
The representation groups are not unique, for $n \geq 4$ there are two for $S _ { n }$; however, to determine the projective representations of $S _ { n }$ it suffices to consider one of these, which will be denoted by $\tilde { S } _ { n }$; similarly, $\tilde { A } _ { n }$ is a representation group of $A _ { n }$. The non-linear representations of $\tilde { S } _ { n }$ and $\tilde { A } _ { n }$, that is, those representations $T$ for which $T ( z ) = - I _ { n }$, $n = \operatorname { dim } T$, where $z$ is the generator of $\mathbf{Z}_{2}$ are called spin representations. Schur [[#References|[a10]]] classified the complex irreducible spin representations of $\tilde { S } _ { n }$ and $\tilde { A } _ { n }$, $n \geq 4$ (and also the remaining non-linear projective representations for $\tilde{A} _ { 6 }$ and $\tilde { A } _ { 7 }$). Although more complicated, the classification of the spin representations follows the corresponding results for the linear representations of these groups. (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]). A standard reference is [[#References|[a4]]], but see also [[#References|[a12]]].
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013037.png" /> is the sign representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013038.png" />. The characters of these representations, called spin characters and denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013040.png" />, can take only non-zero values on the classes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013041.png" /> which are of cycle-type corresponding to partitions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013042.png" />, with all parts odd, and in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013043.png" />. The values of the spin characters can be given explicitly in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013044.png" />, but for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013045.png" /> can be determined from a class of symmetric functions introduced for this purpose by Schur and now called Schur <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013047.png" />-functions (cf. [[Schur Q-function|Schur <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013048.png" />-function]]) — these play an analogous role to that of Schur functions for linear representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013049.png" /> (cf. [[Schur functions in algebraic combinatorics|Schur functions in algebraic combinatorics]]). For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013050.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013051.png" /> denote the corresponding Schur <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013052.png" />-function; then
+
In this case, the irreducible spin representations are parametrized by the set $\operatorname{SP} ( n )$ of strict partitions $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { r  ( \lambda ) })$ of $n$, where $\lambda _ { 1 } &gt; \ldots &gt; \lambda _ { r(\lambda) } ( \lambda ) &gt; 0$. If $\operatorname {SP} ^ { + } ( n )$ (respectively, $\text{SP} ^ { - } ( n )$) denotes the subset of $\operatorname{SP} ( n )$ where the number of even parts is even (odd), then a complete list of irreducible spin representations is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013053.png" /></td> </tr></table>
+
\begin{equation*} \{ T _ { \lambda } : \lambda \in \operatorname{SP} ^ { + } ( n ) \} \bigcup \{ T _ { \lambda } , T _ { \lambda } ^ { \prime } = \operatorname { sgn } . T _ { \lambda } : \lambda \in \operatorname{SP} ^ { - } ( n ) \}, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013054.png" /> is the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013055.png" /> at the class of cycle-type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013057.png" /> is the order of that class and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013058.png" /> is the corresponding power-sum symmetric function and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013059.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013060.png" /> according as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013061.png" /> is even or odd. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013062.png" />, then
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013037.png"/> is the sign representation of $S _ { n }$. The characters of these representations, called spin characters and denoted by $\zeta_{ \lambda}$ and $\zeta _ { \lambda } ^ { \prime }$, can take only non-zero values on the classes of $S _ { n }$ which are of cycle-type corresponding to partitions in $O ( n )$, with all parts odd, and in $\text{SP} ^ { - } ( n )$. The values of the spin characters can be given explicitly in the case $\text{SP} ^ { - } ( n )$, but for $O ( n )$ can be determined from a class of symmetric functions introduced for this purpose by Schur and now called Schur $Q$-functions (cf. [[Schur Q-function|Schur $Q$-function]]) — these play an analogous role to that of Schur functions for linear representations of $S _ { n }$ (cf. [[Schur functions in algebraic combinatorics|Schur functions in algebraic combinatorics]]). For each $\lambda \in \operatorname{SP} ( n )$, let $Q_\lambda$ denote the corresponding Schur $Q$-function; then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013063.png" /></td> </tr></table>
+
\begin{equation*} Q _ { \lambda } = \frac { 1 } { n ! } \sum _ { \pi \in O ( n ) } 2 ^ { ( r ( \lambda ) + r ( \pi ) + \epsilon ( \lambda ) ) / 2 } k _ { \pi } \zeta _ { \lambda } ^ { \pi } p _ { \pi }, \end{equation*}
 +
 
 +
where $\zeta _ { \lambda } ^ { \pi }$ is the value of $\zeta_{ \lambda}$ at the class of cycle-type $\pi$, $ { k } _ { \pi }$ is the order of that class and $p _ { \pi }$ is the corresponding power-sum symmetric function and $\epsilon ( \lambda ) = 0$ or $1$ according as $n - r ( \lambda )$ is even or odd. If $\lambda \in SP ^ { - } ( n )$, then
 +
 
 +
\begin{equation*} \zeta _ { \lambda } ^ { \lambda } = i ^ { ( n - r ( \lambda ) + 1 ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { r ( \lambda ) } ) / 2 } \end{equation*}
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013064.png" /></td> </tr></table>
+
\begin{equation*} \zeta _ { \lambda } ^ { \mu } = 0 \text { if } \mu \neq \lambda , \mu \in \text{SP} ^ { - } ( n ). \end{equation*}
  
 
Schur also determined the dimension formula
 
Schur also determined the dimension formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013065.png" /></td> </tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013065.png"/></td> </tr></table>
  
The spin representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013066.png" /> are now easily determined; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013067.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013068.png" /> is an irreducible spin representation and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013069.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013070.png" /> splits into two conjugate irreducible spin representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013071.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013072.png" /> of equal dimension and
+
The spin representations of $\tilde { A } _ { n }$ are now easily determined; if $\lambda \in SP ^ { - } ( n )$, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013068.png"/> is an irreducible spin representation and if $\lambda \in \operatorname {SP} ^ { + } ( n )$, then $T _ { \lambda }$ splits into two conjugate irreducible spin representations $T _ { \lambda } ^ { + }$ and $T^- _ { {\lambda} }$ of equal dimension and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013073.png" /></td> </tr></table>
+
\begin{equation*} \zeta _ { \lambda } ^ { + \lambda } = \zeta _ { \lambda } ^ { - \lambda } = i ^ { ( n - r ( \lambda ) ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { r ( \lambda ) } ) }. \end{equation*}
  
All these results appeared in Schur's 1911 paper [[#References|[a11]]] — the subject then lay dormant until the appearance of papers by A.O. Morris in the early 1960{}s [[#References|[a6]]], [[#References|[a7]]], where the combinatorial concepts of bars and bar lengths were introduced (cf. [[Schur Q-function|Schur <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013074.png" />-function]]); these correspond to the concepts of hooks and hook lengths in the linear case. Thus, the above dimension formula can be interpreted in terms of bar lengths:
+
All these results appeared in Schur's 1911 paper [[#References|[a11]]] — the subject then lay dormant until the appearance of papers by A.O. Morris in the early 1960{}s [[#References|[a6]]], [[#References|[a7]]], where the combinatorial concepts of bars and bar lengths were introduced (cf. [[Schur Q-function|Schur $Q$-function]]); these correspond to the concepts of hooks and hook lengths in the linear case. Thus, the above dimension formula can be interpreted in terms of bar lengths:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013075.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { dim } T _ { \lambda } = 2 ^ { [ ( n - r ( \lambda ) ) / 2 ] } \frac { n ! } { \prod _ { ( i , j ) } b _ { i j } }, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013076.png" /> denotes the bar length at the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013077.png" />th node in the [[Young diagram|Young diagram]] corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013078.png" />. Also, a recursion formula for calculating the irreducible spin characters analogous to the Murnaghan–Nakayama formula in the linear case was obtained in terms of these concepts. In all these formulas, as in the above dimension formula, the real difference is the complication added by the powers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013079.png" /> which appear.
+
where $b _ {ij }$ denotes the bar length at the $( i , j )$th node in the [[Young diagram|Young diagram]] corresponding to $\lambda$. Also, a recursion formula for calculating the irreducible spin characters analogous to the Murnaghan–Nakayama formula in the linear case was obtained in terms of these concepts. In all these formulas, as in the above dimension formula, the real difference is the complication added by the powers of $2$ which appear.
  
Totally lacking until the 1990 work of M.L. Nazarov [[#References|[a8]]] were explicit methods for constructing the irreducible spin matrix representations corresponding to each partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013080.png" /> — these generalize the ones given by Schur for the partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013081.png" />. The method is comparable to the classical construction of the semi-normal form given by A. Young (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]). More recently, Nazarov has generalized Young's symmetrizer to the spin case. However, there are presently (2000) no analogues developed to Specht modules (cf. [[Specht module|Specht module]]).
+
Totally lacking until the 1990 work of M.L. Nazarov [[#References|[a8]]] were explicit methods for constructing the irreducible spin matrix representations corresponding to each partition $\lambda \in \operatorname{SP} ( n )$ — these generalize the ones given by Schur for the partition $( n )$. The method is comparable to the classical construction of the semi-normal form given by A. Young (cf. [[Representation of the symmetric groups|Representation of the symmetric groups]]). More recently, Nazarov has generalized Young's symmetrizer to the spin case. However, there are presently (2000) no analogues developed to Specht modules (cf. [[Specht module|Specht module]]).
  
Some progress has been made on the modular spin representations of these groups. In 2001, the two papers [[#References|[a2]]] and [[#References|[a3]]] by J. Brundan and A. Kleshchev completely overturned the position. A conjecture corresponding to the classical Nakayama conjecture on the distribution of the spin characters into their <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013082.png" />-blocks has been proved — but, in general, the position here is even less understood than in the case of the modular ordinary representations.
+
Some progress has been made on the modular spin representations of these groups. In 2001, the two papers [[#References|[a2]]] and [[#References|[a3]]] by J. Brundan and A. Kleshchev completely overturned the position. A conjecture corresponding to the classical Nakayama conjecture on the distribution of the spin characters into their $p$-blocks has been proved — but, in general, the position here is even less understood than in the case of the modular ordinary representations.
  
 
See [[#References|[a1]]] for the most recent developments.
 
See [[#References|[a1]]] for the most recent developments.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Bessenrodt,  "Algebra and combinatorics"  ''Progress in Math.'' , '''168'''  (1998)  pp. 64–91</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Brundan,  A. Kleshchev,  "Projective representations of the symmetric group via Sergeev duality"  ''Math. Z.''  (to appear)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Brundan,  A. Kleshchev,  "Hecke–Clifford superalgebras, crystals of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013083.png" /> and modular branching rules for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013084.png" />"  (to appear)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P.N. Hoffman,  J.F. Humphreys,  "Projective representations of the symmetric groups" , Oxford Univ. Press  (1992)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  G. Karpilovsky,  "Projective representations of finite groups" , M. Dekker  (1995)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A.O. Morris,  "The spin representation of the symmetric group"  ''Proc. London Math. Soc.'' , '''12''' :  3  (1962)  pp. 55–76</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  A.O. Morris,  "The spin representation of the symmetric group"  ''Canad. J. Math.'' , '''17'''  (1965)  pp. 543–549</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  M.L. Nazarov,  "Young's orthogonal form of irreducible projective representations of the symmetric group"  ''J. London Math. Soc.'' , '''42''' :  2  (1990)  pp. 437–451</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  I. Schur,  "Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen"  ''J. Reine Angew. Math.'' , '''127'''  (1904)  pp. 20–50</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  I. Schur,  "Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen"  ''J. Reine Angew. Math.'' , '''132'''  (1907)  pp. 85–137</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  I. Schur,  "Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen"  ''J. Reine Angew. Math.'' , '''139'''  (1911)  pp. 155–250</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  J.R. Stembridge,  "Shifted tableaux and projective representations of symmetric groups"  ''Adv. Math.'' , '''74'''  (1989)  pp. 87–134</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  C. Bessenrodt,  "Algebra and combinatorics"  ''Progress in Math.'' , '''168'''  (1998)  pp. 64–91</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J. Brundan,  A. Kleshchev,  "Projective representations of the symmetric group via Sergeev duality"  ''Math. Z.''  (to appear)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  J. Brundan,  A. Kleshchev,  "Hecke–Clifford superalgebras, crystals of type $A _ { 2 l } ^ { ( * ) }$ and modular branching rules for $\tilde { S } _ { n }$"  (to appear)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  P.N. Hoffman,  J.F. Humphreys,  "Projective representations of the symmetric groups" , Oxford Univ. Press  (1992)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  G. Karpilovsky,  "Projective representations of finite groups" , M. Dekker  (1995)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  A.O. Morris,  "The spin representation of the symmetric group"  ''Proc. London Math. Soc.'' , '''12''' :  3  (1962)  pp. 55–76</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  A.O. Morris,  "The spin representation of the symmetric group"  ''Canad. J. Math.'' , '''17'''  (1965)  pp. 543–549</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  M.L. Nazarov,  "Young's orthogonal form of irreducible projective representations of the symmetric group"  ''J. London Math. Soc.'' , '''42''' :  2  (1990)  pp. 437–451</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  I. Schur,  "Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen"  ''J. Reine Angew. Math.'' , '''127'''  (1904)  pp. 20–50</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  I. Schur,  "Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen"  ''J. Reine Angew. Math.'' , '''132'''  (1907)  pp. 85–137</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  I. Schur,  "Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen"  ''J. Reine Angew. Math.'' , '''139'''  (1911)  pp. 155–250</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  J.R. Stembridge,  "Shifted tableaux and projective representations of symmetric groups"  ''Adv. Math.'' , '''74'''  (1989)  pp. 87–134</td></tr></table>

Revision as of 16:57, 1 July 2020

The classification of the projective representations of a finite group $G$ (cf. also Projective representation) was obtained by I. Schur [a9], [a10], who showed that over the complex field $\mathbf{C}$ the problem of determining all projective representations of $G$ can be reduced to determining the linear representations of stem extensions $\tilde { G }$ of $G$, called representation groups, by its Schur multiplier $M ( G )$ (cf. also Schur multiplicator). A standard reference is [a5].

In the case of the symmetric groups $S _ { n }$ and the alternating groups $A _ { n }$ (cf. also Symmetric group; Alternating group), Schur [a11] further showed that

\begin{equation*} M ( S _ { n } ) \cong \left\{ \begin{array} { l l } { \mathbf{Z} _ { 2 } } & { \text { if } n \geq 4, } \\ { \{ e \} } & { \text { if } n < 4, } \end{array} \right. \end{equation*}

\begin{equation*} M ( A _ { n } ) \cong \left\{ \begin{array} { l l } { \mathbf Z _ { 2 } } & { \text { if } n \geq 4 , n \neq 6,7, } \\ { \mathbf Z _ { 6 } } & { \text { if } n = 6,7, } \\ { \{ e \} } & { \text { if } n < 4. } \end{array} \right. \end{equation*}

The representation groups are not unique, for $n \geq 4$ there are two for $S _ { n }$; however, to determine the projective representations of $S _ { n }$ it suffices to consider one of these, which will be denoted by $\tilde { S } _ { n }$; similarly, $\tilde { A } _ { n }$ is a representation group of $A _ { n }$. The non-linear representations of $\tilde { S } _ { n }$ and $\tilde { A } _ { n }$, that is, those representations $T$ for which $T ( z ) = - I _ { n }$, $n = \operatorname { dim } T$, where $z$ is the generator of $\mathbf{Z}_{2}$ are called spin representations. Schur [a10] classified the complex irreducible spin representations of $\tilde { S } _ { n }$ and $\tilde { A } _ { n }$, $n \geq 4$ (and also the remaining non-linear projective representations for $\tilde{A} _ { 6 }$ and $\tilde { A } _ { 7 }$). Although more complicated, the classification of the spin representations follows the corresponding results for the linear representations of these groups. (cf. Representation of the symmetric groups). A standard reference is [a4], but see also [a12].

In this case, the irreducible spin representations are parametrized by the set $\operatorname{SP} ( n )$ of strict partitions $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { r ( \lambda ) })$ of $n$, where $\lambda _ { 1 } > \ldots > \lambda _ { r(\lambda) } ( \lambda ) > 0$. If $\operatorname {SP} ^ { + } ( n )$ (respectively, $\text{SP} ^ { - } ( n )$) denotes the subset of $\operatorname{SP} ( n )$ where the number of even parts is even (odd), then a complete list of irreducible spin representations is:

\begin{equation*} \{ T _ { \lambda } : \lambda \in \operatorname{SP} ^ { + } ( n ) \} \bigcup \{ T _ { \lambda } , T _ { \lambda } ^ { \prime } = \operatorname { sgn } . T _ { \lambda } : \lambda \in \operatorname{SP} ^ { - } ( n ) \}, \end{equation*}

where is the sign representation of $S _ { n }$. The characters of these representations, called spin characters and denoted by $\zeta_{ \lambda}$ and $\zeta _ { \lambda } ^ { \prime }$, can take only non-zero values on the classes of $S _ { n }$ which are of cycle-type corresponding to partitions in $O ( n )$, with all parts odd, and in $\text{SP} ^ { - } ( n )$. The values of the spin characters can be given explicitly in the case $\text{SP} ^ { - } ( n )$, but for $O ( n )$ can be determined from a class of symmetric functions introduced for this purpose by Schur and now called Schur $Q$-functions (cf. Schur $Q$-function) — these play an analogous role to that of Schur functions for linear representations of $S _ { n }$ (cf. Schur functions in algebraic combinatorics). For each $\lambda \in \operatorname{SP} ( n )$, let $Q_\lambda$ denote the corresponding Schur $Q$-function; then

\begin{equation*} Q _ { \lambda } = \frac { 1 } { n ! } \sum _ { \pi \in O ( n ) } 2 ^ { ( r ( \lambda ) + r ( \pi ) + \epsilon ( \lambda ) ) / 2 } k _ { \pi } \zeta _ { \lambda } ^ { \pi } p _ { \pi }, \end{equation*}

where $\zeta _ { \lambda } ^ { \pi }$ is the value of $\zeta_{ \lambda}$ at the class of cycle-type $\pi$, $ { k } _ { \pi }$ is the order of that class and $p _ { \pi }$ is the corresponding power-sum symmetric function and $\epsilon ( \lambda ) = 0$ or $1$ according as $n - r ( \lambda )$ is even or odd. If $\lambda \in SP ^ { - } ( n )$, then

\begin{equation*} \zeta _ { \lambda } ^ { \lambda } = i ^ { ( n - r ( \lambda ) + 1 ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { r ( \lambda ) } ) / 2 } \end{equation*}

and

\begin{equation*} \zeta _ { \lambda } ^ { \mu } = 0 \text { if } \mu \neq \lambda , \mu \in \text{SP} ^ { - } ( n ). \end{equation*}

Schur also determined the dimension formula

The spin representations of $\tilde { A } _ { n }$ are now easily determined; if $\lambda \in SP ^ { - } ( n )$, then is an irreducible spin representation and if $\lambda \in \operatorname {SP} ^ { + } ( n )$, then $T _ { \lambda }$ splits into two conjugate irreducible spin representations $T _ { \lambda } ^ { + }$ and $T^- _ { {\lambda} }$ of equal dimension and

\begin{equation*} \zeta _ { \lambda } ^ { + \lambda } = \zeta _ { \lambda } ^ { - \lambda } = i ^ { ( n - r ( \lambda ) ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { r ( \lambda ) } ) }. \end{equation*}

All these results appeared in Schur's 1911 paper [a11] — the subject then lay dormant until the appearance of papers by A.O. Morris in the early 1960{}s [a6], [a7], where the combinatorial concepts of bars and bar lengths were introduced (cf. Schur $Q$-function); these correspond to the concepts of hooks and hook lengths in the linear case. Thus, the above dimension formula can be interpreted in terms of bar lengths:

\begin{equation*} \operatorname { dim } T _ { \lambda } = 2 ^ { [ ( n - r ( \lambda ) ) / 2 ] } \frac { n ! } { \prod _ { ( i , j ) } b _ { i j } }, \end{equation*}

where $b _ {ij }$ denotes the bar length at the $( i , j )$th node in the Young diagram corresponding to $\lambda$. Also, a recursion formula for calculating the irreducible spin characters analogous to the Murnaghan–Nakayama formula in the linear case was obtained in terms of these concepts. In all these formulas, as in the above dimension formula, the real difference is the complication added by the powers of $2$ which appear.

Totally lacking until the 1990 work of M.L. Nazarov [a8] were explicit methods for constructing the irreducible spin matrix representations corresponding to each partition $\lambda \in \operatorname{SP} ( n )$ — these generalize the ones given by Schur for the partition $( n )$. The method is comparable to the classical construction of the semi-normal form given by A. Young (cf. Representation of the symmetric groups). More recently, Nazarov has generalized Young's symmetrizer to the spin case. However, there are presently (2000) no analogues developed to Specht modules (cf. Specht module).

Some progress has been made on the modular spin representations of these groups. In 2001, the two papers [a2] and [a3] by J. Brundan and A. Kleshchev completely overturned the position. A conjecture corresponding to the classical Nakayama conjecture on the distribution of the spin characters into their $p$-blocks has been proved — but, in general, the position here is even less understood than in the case of the modular ordinary representations.

See [a1] for the most recent developments.

References

[a1] C. Bessenrodt, "Algebra and combinatorics" Progress in Math. , 168 (1998) pp. 64–91
[a2] J. Brundan, A. Kleshchev, "Projective representations of the symmetric group via Sergeev duality" Math. Z. (to appear)
[a3] J. Brundan, A. Kleshchev, "Hecke–Clifford superalgebras, crystals of type $A _ { 2 l } ^ { ( * ) }$ and modular branching rules for $\tilde { S } _ { n }$" (to appear)
[a4] P.N. Hoffman, J.F. Humphreys, "Projective representations of the symmetric groups" , Oxford Univ. Press (1992)
[a5] G. Karpilovsky, "Projective representations of finite groups" , M. Dekker (1995)
[a6] A.O. Morris, "The spin representation of the symmetric group" Proc. London Math. Soc. , 12 : 3 (1962) pp. 55–76
[a7] A.O. Morris, "The spin representation of the symmetric group" Canad. J. Math. , 17 (1965) pp. 543–549
[a8] M.L. Nazarov, "Young's orthogonal form of irreducible projective representations of the symmetric group" J. London Math. Soc. , 42 : 2 (1990) pp. 437–451
[a9] I. Schur, "Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen" J. Reine Angew. Math. , 127 (1904) pp. 20–50
[a10] I. Schur, "Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen" J. Reine Angew. Math. , 132 (1907) pp. 85–137
[a11] I. Schur, "Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen" J. Reine Angew. Math. , 139 (1911) pp. 155–250
[a12] J.R. Stembridge, "Shifted tableaux and projective representations of symmetric groups" Adv. Math. , 74 (1989) pp. 87–134
How to Cite This Entry:
Projective representations of symmetric and alternating groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Projective_representations_of_symmetric_and_alternating_groups&oldid=14390
This article was adapted from an original article by A.O. Morris (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article