# Projective limit

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

inverse limit

A construction that arose originally in set theory and topology, and then found numerous applications in many areas of mathematics. A common example of a projective limit is that of a family of mathematical structures of the same type indexed by the elements of a pre-ordered set. Let be a set endowed with a pre-order relation , and suppose that with each element a set is associated and with each pair , , in which , a mapping is associated, where the , , are identity mappings and for . A set is called a projective limit of the family of sets and mappings if the following conditions are satisfied: a) there exists a family of mappings such that for any pair ; b) for any family of mappings , , from an arbitrary set , for which the equalities hold for , there exists a unique mapping such that for every . The projective limit can be described explicitly as follows. One considers the direct product and selects in it the set of all functions for which the equalities hold for . This subset is the projective limit of the family . If all the are equipped with an additional structure of the same type and the preserve it, then the same structure is induced in the projective limit. Therefore it is possible to speak of projective limits of groups, modules, topological spaces, etc.

A natural generalization of this concept of projective limit is that of the projective limit of a functor. Let be a functor from a small category to an arbitrary category . An object together with morphisms , , is called a projective limit (inverse limit, or simply limit) of the functor if the following conditions are satisfied: ) for any morphism ; and ) for any family of morphisms satisfying for all there exists a unique morphism such that for all . Notation: .

### Examples of projective limits.

1) Let be a discrete category. Then for an arbitrary functor the projective limit of the functor coincides with the product of the family of objects , (cf. Product of a family of objects in a category).

2) Let be a category with two objects and two non-identity morphisms . Then the limit of a functor is the equalizer of the pair of morphisms (cf. Kernel of a morphism in a category).

If a category has products of arbitrary small families of objects and equalizers of pairs of morphisms, then it has limits for all functors defined on small categories.