Difference between revisions of "Kolmogorov-Smirnov test"
(Importing text file) |
(MSC|62G10 Category:Nonparametric inference) |
||
Line 1: | Line 1: | ||
+ | {{MSC|62G10}} | ||
+ | |||
+ | [[Category:Nonparametric inference]] | ||
+ | |||
A [[Non-parametric test|non-parametric test]] used for testing a hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557401.png" />, according to which independent random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557402.png" /> have a given continuous distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557403.png" />, against the one-sided alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557404.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557405.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557406.png" /> is the mathematical expectation of the empirical distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557407.png" />. The Kolmogorov–Smirnov test is constructed from the statistic | A [[Non-parametric test|non-parametric test]] used for testing a hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557401.png" />, according to which independent random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557402.png" /> have a given continuous distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557403.png" />, against the one-sided alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557404.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557405.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557406.png" /> is the mathematical expectation of the empirical distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055740/k0557407.png" />. The Kolmogorov–Smirnov test is constructed from the statistic | ||
Revision as of 14:14, 28 February 2012
2010 Mathematics Subject Classification: Primary: 62G10 [MSN][ZBL]
A non-parametric test used for testing a hypothesis , according to which independent random variables
have a given continuous distribution function
, against the one-sided alternative
:
, where
is the mathematical expectation of the empirical distribution function
. The Kolmogorov–Smirnov test is constructed from the statistic
![]() |
where is the variational series (or set of order statistics) obtained from the sample
. Thus, the Kolmogorov–Smirnov test is a variant of the Kolmogorov test for testing the hypothesis
against a one-sided alternative
. By studying the distribution of the statistic
, N.V. Smirnov [1] showed that
![]() | (1) |
![]() |
where and
is the integer part of the number
. Smirnov obtained in addition to the exact distribution (1) of
its limit distribution, namely: If
and
, then
![]() |
where is any positive number. By means of the technique of asymptotic Pearson transformation it has been proved [2] that if
and
, then
![]() | (2) |
According to the Kolmogorov–Smirnov test, the hypothesis must be rejected with significance level
whenever
![]() |
where, by virtue of (2),
![]() |
The testing of against the alternative
:
is dealt with similarly. In this case the statistic of the Kolmogorov–Smirnov test is the random variable
![]() |
whose distribution is the same as that of the statistic when
is true.
References
[1] | N.V. Smirnov, "Approximate distribution laws for random variables, constructed from empirical data" Uspekhi Mat. Nauk , 10 (1944) pp. 179–206 (In Russian) |
[2] | L.N. Bol'shev, "Asymptotically Pearson transformations" Theor. Probab. Appl. , 8 (1963) pp. 121–146 Teor. Veroyatnost. i Primenen. , 8 : 2 (1963) pp. 129–155 |
[3] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
[4] | B.L. van der Waerden, "Mathematische Statistik" , Springer (1957) |
Comments
There is also a two-sample Kolmogorov–Smirnov test, cf. the editorial comments to Kolmogorov test and, for details, [a1], [a2].
References
[a1] | G.E. Noether, "A brief survey of nonparametric statistics" R.V. Hogg (ed.) , Studies in statistics , Math. Assoc. Amer. (1978) pp. 39–65 |
[a2] | M. Hollander, D.A. Wolfe, "Nonparametric statistical methods" , Wiley (1973) |
Kolmogorov-Smirnov test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kolmogorov-Smirnov_test&oldid=21350