# Fractal dimension

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A, possibly non-integer valued, dimension concept. Let $M$ be a metric space and $X \subset M$ a bounded subset. For each $\epsilon$ let $N_\epsilon(X)$ be the minimal number of balls of radius $\epsilon$ necessary to cover $X$. Then $$d_F(X) = \limsup_{\epsilon \rightarrow 0} \frac{\log N_\epsilon(X)}{\log \epsilon^{-1}}$$ is the fractal dimension of $X$. It has also been called the capacity, the Mandelbrot dimension or the Shnirel'man–Kolmogorov dimension of $X$.

One has $$d_F(X) = \inf\left\lbrace{ d>0 : \limsup_{\epsilon \rightarrow 0} \epsilon^d N_\epsilon(X)=0 }\right\rbrace$$

If $d_H(X)$ denotes the Hausdorff dimension of $X$, then $d_H(X) \le d_F(X)$.

#### References

 [a1] B.B. Mandelbrot, "Form, chance and dimension" , Freeman (1977)
How to Cite This Entry:
Fractal dimension. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fractal_dimension&oldid=35687