Namespaces
Variants
Actions

Difference between revisions of "Fourier algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 38 formulas out of 38 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 38 formulas, 38 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''Eymard algebra''
 
''Eymard algebra''
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301701.png" /> be a locally [[Compact group|compact group]]. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301702.png" /> (see also [[Figà-Talamanca algebra|Figà-Talamanca algebra]] for notations) is called the Fourier algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301703.png" />. In fact,
+
Let $G$ be a locally [[Compact group|compact group]]. The algebra $A _ { 2 } ( G )$ (see also [[Figà-Talamanca algebra|Figà-Talamanca algebra]] for notations) is called the Fourier algebra of $G$. In fact,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301704.png" /></td> </tr></table>
+
\begin{equation*} A _ { 2 } ( G ) = \left\{ \overline { k } *  \breve{ l } : k , l \in \mathcal{L} _ { C } ^ { 2 } ( G ) \right\} \end{equation*}
  
and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301705.png" />,
+
and for $u \in A _ { 2 } ( G )$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301706.png" /></td> </tr></table>
+
\begin{equation*} \| u \| A _ { 2 ^{ ( G )}} = \operatorname { inf } \{ N _ { 2 } ( k ) N _ { 2 } ( l ) : k , l \in \mathcal{L} _ { \text{C} } ^ { 2 } ( G ) , u = \overline { k }  *  \check{l} \}. \end{equation*}
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301707.png" /> be Abelian and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301708.png" /> be the canonical mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301709.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017010.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017012.png" />, is an isometric isomorphism of the [[Banach algebra|Banach algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017013.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017014.png" />. Therefore <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017015.png" /> can be considered as a substitute of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017016.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017017.png" /> is non-Abelian.
+
Let $G$ be Abelian and let $\varepsilon$ be the canonical mapping from $G$ onto $\widehat {\widehat {G} }$. Then $f \mapsto ( \widehat { f } \circ \varepsilon )$, where $ \check{\varphi} ( \chi ) = \varphi ( \chi ^ { - 1 } )$, is an isometric isomorphism of the [[Banach algebra|Banach algebra]] $L ^ { 1 } ( \hat { G } )$ onto $A _ { 2 } ( G )$. Therefore $A _ { 2 } ( G )$ can be considered as a substitute of $L _ { \text{C} } ^ { 1 } ( \hat { G } )$ if $G$ is non-Abelian.
  
One always has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017018.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017019.png" /> is precisely the pre-dual of the [[Von Neumann algebra|von Neumann algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017020.png" />. For the definition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017022.png" />, see [[Figà-Talamanca algebra|Figà-Talamanca algebra]]. Consequently, in analogy with the Abelian case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017023.png" /> is weakly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017024.png" /> sequentially complete.
+
One always has $P M _ { 2 } ( G ) = C V _ { 2 } ( G )$: $A _ { 2 } ( G )$ is precisely the pre-dual of the [[Von Neumann algebra|von Neumann algebra]] $C V _ { 2 } ( G )$. For the definition of $C V _ { 2 } ( G )$ and $P M _ { 2 } ( G )$, see [[Figà-Talamanca algebra|Figà-Talamanca algebra]]. Consequently, in analogy with the Abelian case, $A _ { 2 } ( G )$ is weakly $\sigma ( A _ { 2 } ( G ) , C V _ { 2 } ( G ) )$ sequentially complete.
  
The existence, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017025.png" /> not amenable, of approximate units in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017026.png" /> is still in doubt (as of 2000). However, such exist for all closed subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017028.png" />. Such approximate units in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017029.png" /> can be used in the study of lattices of non-compact simple Lie groups of real rank one ([[#References|[a1]]]).
+
The existence, for $G$ not amenable, of approximate units in $A _ { 2 } ( G )$ is still in doubt (as of 2000). However, such exist for all closed subgroups of $SO ( n , 1 )$ and $ \operatorname{SU} ( n , 1 )$. Such approximate units in $A _ { 2 }$ can be used in the study of lattices of non-compact simple Lie groups of real rank one ([[#References|[a1]]]).
  
For a study of certain ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017030.png" />, see [[#References|[a2]]], [[#References|[a4]]].
+
For a study of certain ideals of $A _ { 2 } ( G )$, see [[#References|[a2]]], [[#References|[a4]]].
  
The unimodular case was first investigated by W.F. Stinespring, using a very interesting non-commutative integration theory [[#References|[a6]]]. The case of a general locally compact group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017031.png" /> was initiated by P. Eymard [[#References|[a3]]] on the basis of an extensive use of the theories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017032.png" />-algebras and von Neumann algebras.
+
The unimodular case was first investigated by W.F. Stinespring, using a very interesting non-commutative integration theory [[#References|[a6]]]. The case of a general locally compact group $G$ was initiated by P. Eymard [[#References|[a3]]] on the basis of an extensive use of the theories of $C ^ { * }$-algebras and von Neumann algebras.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017033.png" /> is non-Abelian, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017034.png" /> is also called the Eymard algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017035.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017036.png" />.
+
If $G$ is non-Abelian, $A _ { 2 } ( G )$ is also called the Eymard algebra of $G$ and is denoted by $A ( G )$.
  
 
See also [[Fourier–Stieltjes algebra|Fourier–Stieltjes algebra]].
 
See also [[Fourier–Stieltjes algebra|Fourier–Stieltjes algebra]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Cowling,  U. Haagerup,  "Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one."  ''Invent. Math.'' , '''96'''  (1989)  pp. 507–549</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Delaporte,  A. Derighetti,  "Best bounds for the approximate units of certain ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017037.png" /> and of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017038.png" />"  ''Proc. Amer. Math. Soc.'' , '''124'''  (1996)  pp. 1159–1169</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P. Eymard,  "L'algèbre de Fourier d'un groupe localement compact"  ''Bull. Soc. Math. France'' , '''92'''  (1964)  pp. 181–236</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  E. Kaniuth,  A.T. Lau,  "A separation property of positive definite functions on locally compact groups and applications to Fourier algebras"  ''J. Funct. Anal.'' , '''175'''  (2000)  pp. 89–110</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J.-P. Pier,  "Amenable locally compact groups" , Wiley  (1984)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  W.F. Stinespring,  "Integration theorems for gages and duality for unimodular groups"  ''Trans. Amer. Math. Soc.'' , '''90'''  (1959)  pp. 15–56</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  M. Cowling,  U. Haagerup,  "Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one."  ''Invent. Math.'' , '''96'''  (1989)  pp. 507–549</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J. Delaporte,  A. Derighetti,  "Best bounds for the approximate units of certain ideals of $L ^ { 1 } ( G )$ and of $A _ { p } ( G )$"  ''Proc. Amer. Math. Soc.'' , '''124'''  (1996)  pp. 1159–1169</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  P. Eymard,  "L'algèbre de Fourier d'un groupe localement compact"  ''Bull. Soc. Math. France'' , '''92'''  (1964)  pp. 181–236</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  E. Kaniuth,  A.T. Lau,  "A separation property of positive definite functions on locally compact groups and applications to Fourier algebras"  ''J. Funct. Anal.'' , '''175'''  (2000)  pp. 89–110</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  J.-P. Pier,  "Amenable locally compact groups" , Wiley  (1984)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  W.F. Stinespring,  "Integration theorems for gages and duality for unimodular groups"  ''Trans. Amer. Math. Soc.'' , '''90'''  (1959)  pp. 15–56</td></tr></table>

Latest revision as of 16:58, 1 July 2020

Eymard algebra

Let $G$ be a locally compact group. The algebra $A _ { 2 } ( G )$ (see also Figà-Talamanca algebra for notations) is called the Fourier algebra of $G$. In fact,

\begin{equation*} A _ { 2 } ( G ) = \left\{ \overline { k } * \breve{ l } : k , l \in \mathcal{L} _ { C } ^ { 2 } ( G ) \right\} \end{equation*}

and for $u \in A _ { 2 } ( G )$,

\begin{equation*} \| u \| A _ { 2 ^{ ( G )}} = \operatorname { inf } \{ N _ { 2 } ( k ) N _ { 2 } ( l ) : k , l \in \mathcal{L} _ { \text{C} } ^ { 2 } ( G ) , u = \overline { k } * \check{l} \}. \end{equation*}

Let $G$ be Abelian and let $\varepsilon$ be the canonical mapping from $G$ onto $\widehat {\widehat {G} }$. Then $f \mapsto ( \widehat { f } \circ \varepsilon )$, where $ \check{\varphi} ( \chi ) = \varphi ( \chi ^ { - 1 } )$, is an isometric isomorphism of the Banach algebra $L ^ { 1 } ( \hat { G } )$ onto $A _ { 2 } ( G )$. Therefore $A _ { 2 } ( G )$ can be considered as a substitute of $L _ { \text{C} } ^ { 1 } ( \hat { G } )$ if $G$ is non-Abelian.

One always has $P M _ { 2 } ( G ) = C V _ { 2 } ( G )$: $A _ { 2 } ( G )$ is precisely the pre-dual of the von Neumann algebra $C V _ { 2 } ( G )$. For the definition of $C V _ { 2 } ( G )$ and $P M _ { 2 } ( G )$, see Figà-Talamanca algebra. Consequently, in analogy with the Abelian case, $A _ { 2 } ( G )$ is weakly $\sigma ( A _ { 2 } ( G ) , C V _ { 2 } ( G ) )$ sequentially complete.

The existence, for $G$ not amenable, of approximate units in $A _ { 2 } ( G )$ is still in doubt (as of 2000). However, such exist for all closed subgroups of $SO ( n , 1 )$ and $ \operatorname{SU} ( n , 1 )$. Such approximate units in $A _ { 2 }$ can be used in the study of lattices of non-compact simple Lie groups of real rank one ([a1]).

For a study of certain ideals of $A _ { 2 } ( G )$, see [a2], [a4].

The unimodular case was first investigated by W.F. Stinespring, using a very interesting non-commutative integration theory [a6]. The case of a general locally compact group $G$ was initiated by P. Eymard [a3] on the basis of an extensive use of the theories of $C ^ { * }$-algebras and von Neumann algebras.

If $G$ is non-Abelian, $A _ { 2 } ( G )$ is also called the Eymard algebra of $G$ and is denoted by $A ( G )$.

See also Fourier–Stieltjes algebra.

References

[a1] M. Cowling, U. Haagerup, "Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one." Invent. Math. , 96 (1989) pp. 507–549
[a2] J. Delaporte, A. Derighetti, "Best bounds for the approximate units of certain ideals of $L ^ { 1 } ( G )$ and of $A _ { p } ( G )$" Proc. Amer. Math. Soc. , 124 (1996) pp. 1159–1169
[a3] P. Eymard, "L'algèbre de Fourier d'un groupe localement compact" Bull. Soc. Math. France , 92 (1964) pp. 181–236
[a4] E. Kaniuth, A.T. Lau, "A separation property of positive definite functions on locally compact groups and applications to Fourier algebras" J. Funct. Anal. , 175 (2000) pp. 89–110
[a5] J.-P. Pier, "Amenable locally compact groups" , Wiley (1984)
[a6] W.F. Stinespring, "Integration theorems for gages and duality for unimodular groups" Trans. Amer. Math. Soc. , 90 (1959) pp. 15–56
How to Cite This Entry:
Fourier algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier_algebra&oldid=12009
This article was adapted from an original article by Antoine Derighetti (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article