# Euler integrals

From Encyclopedia of Mathematics

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: *Primary:* 33B15 [MSN][ZBL]

The integral $$ B(p,q) = \int_0^1 x^{p-1}(1-x)^{q-1}\rd x, \quad p,q > 0, $$ called the Euler integral of the first kind, or the beta-function, and $$ \int_0^\infty x^{s-1}e^{-x} \rd x, $$ called the Euler integral of the second kind. (The latter converges for $s>0$ and is a representation of the gamma-function.)

These integrals were considered by L. Euler (1729–1731).

**How to Cite This Entry:**

Euler integrals.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Euler_integrals&oldid=25725

This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article