Namespaces
Variants
Actions

Difference between revisions of "Euler angles"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
The angles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e0363901.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e0363902.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e0363903.png" /> that determine the position of one Cartesian rectangular coordinate system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e0363904.png" /> relative to another one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e0363905.png" /> with the same origin and orientation. The Euler angles are regarded as the angles through which the former must be successively rotated about the axes of the latter so that in the end the two systems coincide (see Fig.).
+
{{TEX|done}}
 +
The angles $\phi$, $\psi$ and $\theta$ that determine the position of one Cartesian rectangular coordinate system $0xyz$ relative to another one $0x'y'z'$ with the same origin and orientation. The Euler angles are regarded as the angles through which the former must be successively rotated about the axes of the latter so that in the end the two systems coincide (see Fig.).
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/e036390a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/e036390a.gif" />
Line 5: Line 6:
 
Figure: e036390a
 
Figure: e036390a
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e0363906.png" /> be the axis coinciding with the line of intersection of the planes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e0363907.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e0363908.png" />, oriented so that the three lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e0363909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639011.png" /> form a right-handed triple. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639012.png" /> is the angle between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639014.png" />, measured in the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639015.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639016.png" /> in the direction of the shortest rotation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639017.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639019.png" /> is the angle between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639021.png" /> not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639022.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639023.png" /> is in the direction of the shortest rotation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639024.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639025.png" />. The coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639026.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639027.png" /> are connected by the relations
+
Let $u$ be the axis coinciding with the line of intersection of the planes $0xy$ and $0x'y'$, oriented so that the three lines $0z$, $0z'$ and $u$ form a right-handed triple. Then $\psi$ is the angle between $0x$ and $u$, measured in the plane $0xy$ from $0x$ in the direction of the shortest rotation of $0x$ to $0y$, $\theta$ is the angle between $0z$ and $0z'$ not exceeding $\pi$, and $\phi$ is in the direction of the shortest rotation of $0x'$ to $0y'$. The coordinates $x,y,z$, and $x',y',z'$ are connected by the relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639028.png" /></td> </tr></table>
+
$$x'=(\cos\psi\cos\phi-\sin\psi\cos\theta\sin\phi)x'+$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639029.png" /></td> </tr></table>
+
$$+(-\cos\psi\sin\phi-\sin\psi\cos\theta\cos\phi)y'+(\sin\psi\sin\theta)z',$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639030.png" /></td> </tr></table>
+
$$y=(\sin\psi\cos\phi+\cos\psi\cos\theta\sin\phi)x'+$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639031.png" /></td> </tr></table>
+
$$+(-\sin\psi\sin\phi+\cos\psi\cos\theta\cos\phi)y'+(-\cos\psi\sin\theta)z',$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036390/e03639032.png" /></td> </tr></table>
+
$$z=(\sin\theta\sin\phi)x'+(\sin\theta\cos\phi)y'+(\cos\theta)z'.$$
  
 
These angles were introduced by L. Euler (1748).
 
These angles were introduced by L. Euler (1748).

Latest revision as of 14:12, 13 November 2014

The angles $\phi$, $\psi$ and $\theta$ that determine the position of one Cartesian rectangular coordinate system $0xyz$ relative to another one $0x'y'z'$ with the same origin and orientation. The Euler angles are regarded as the angles through which the former must be successively rotated about the axes of the latter so that in the end the two systems coincide (see Fig.).

Figure: e036390a

Let $u$ be the axis coinciding with the line of intersection of the planes $0xy$ and $0x'y'$, oriented so that the three lines $0z$, $0z'$ and $u$ form a right-handed triple. Then $\psi$ is the angle between $0x$ and $u$, measured in the plane $0xy$ from $0x$ in the direction of the shortest rotation of $0x$ to $0y$, $\theta$ is the angle between $0z$ and $0z'$ not exceeding $\pi$, and $\phi$ is in the direction of the shortest rotation of $0x'$ to $0y'$. The coordinates $x,y,z$, and $x',y',z'$ are connected by the relations

$$x'=(\cos\psi\cos\phi-\sin\psi\cos\theta\sin\phi)x'+$$

$$+(-\cos\psi\sin\phi-\sin\psi\cos\theta\cos\phi)y'+(\sin\psi\sin\theta)z',$$

$$y=(\sin\psi\cos\phi+\cos\psi\cos\theta\sin\phi)x'+$$

$$+(-\sin\psi\sin\phi+\cos\psi\cos\theta\cos\phi)y'+(-\cos\psi\sin\theta)z',$$

$$z=(\sin\theta\sin\phi)x'+(\sin\theta\cos\phi)y'+(\cos\theta)z'.$$

These angles were introduced by L. Euler (1748).


Comments

For other formulas, as well as applications, see [a1][a3].

References

[a1] L.D. Landau, E.M. Lifshits, "Mechanics" , Pergamon (1965) (Translated from Russian)
[a2] G. Gallavotti, "The elements of mechanics" , Springer (1983)
[a3] H. Goldstein, "Classical mechanics" , Addison-Wesley (1959)
How to Cite This Entry:
Euler angles. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler_angles&oldid=15870
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article