Namespaces
Variants
Actions

Equiconvergent series

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Convergent or divergent series $\sum_{n=1}^\infty a_n$ and $\sum_{n=1}^\infty b_n$ whose difference is a convergent series with zero sum: $\sum_{n=1}^\infty(a_n-b_n)=0$. If their difference is only a convergent series, then the series are called equiconvergent in the wide sense.

If $a_n=a_n(x)$ and $b_n=b_n(x)$ are functions, for example, $a_n,b_n\colon X\to\mathbf R$, where $X$ is any set and $\mathbf R$ is the set of real numbers, then the series $\sum_{n=1}^\infty a_n(x)$ and $\sum_{n=1}^\infty b_n(x)$ are called uniformly equiconvergent (uniformly equiconvergent in the wide sense) on $X$ if their difference is a series that is uniformly convergent on $X$ with sum zero (respectively, only uniformly convergent on $X$).

Example. If two integrable functions on $[-\pi,\pi]$ are equal on an interval $I\subset[-\pi,\pi]$, then their Fourier series are uniformly equiconvergent on every interval $I^*$ interior to $I$, and the conjugate Fourier series are uniformly equiconvergent in the wide sense on $I^*$.

How to Cite This Entry:
Equiconvergent series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Equiconvergent_series&oldid=43453
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article