Namespaces
Variants
Actions

Difference between revisions of "Divisor (algebraic geometry)"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex,refs)
Line 1: Line 1:
A generalization of the concept of a divisor of an element of a commutative ring. First introduced by E.E. Kummer [[#References|[1]]] under the name of "ideal divisorideal divisor" in his studies on cyclotomic fields.
+
{{MSC|}}
 +
{{TEX|done}}
  
The theory of divisors for an integral commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d0337001.png" /> with a unit element consists in constructing a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d0337002.png" /> from the multiplicative semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d0337003.png" /> of non-zero elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d0337004.png" /> into some semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d0337005.png" /> with unique factorization, the elements of which are known as (integral) divisors of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d0337006.png" />. The theory of divisors makes it possible to reduce a series of problems connected with prime factorization in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d0337007.png" />, where this factorization may be not unique, to the problem of prime factorization in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d0337008.png" />. The image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d0337009.png" /> of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370010.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370011.png" /> and is called the principal divisor of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370012.png" />. One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370013.png" /> is divisible by the divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370014.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370015.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370016.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370017.png" />.
+
A generalization of the concept of a divisor of an element of a commutative ring. First introduced by E.E. Kummer
 +
{{Cite|Ku}} under the name of "ideal divisor" in his studies on cyclotomic fields.
  
More exactly, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370018.png" /> be a free Abelian semi-group with a unit element, the free generators of which are known as prime divisors, and let a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370019.png" /> be given. The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370020.png" /> defines a theory of divisors of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370021.png" /> if it satisfies the following conditions.
+
The theory of divisors for an integral commutative ring $A$ with a unit element consists in constructing a homomorphism $\def\phi{\varphi}\phi$ from the multiplicative semi-group $A^*$ of non-zero elements of $A$ into some semi-group $D_0$ with unique factorization, the elements of which are known as (integral) divisors of the ring $A$. The theory of divisors makes it possible to reduce a series of problems connected with prime factorization in $A$, where this factorization may be not unique, to the problem of prime factorization in $D_0$. The image $\phi(a)\in D_0$ of an element $a\in A^*$ is denoted by $(a)$ and is called the principal divisor of the element $a$. One says that $a\in A^*$ is divisible by the divisor $\def\fa{\mathfrak{a}} \fa\in D_0$ if $\fa$ divides $(a)$ in $D_0$.
  
1) For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370022.png" /> the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370023.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370025.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370026.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370027.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370028.png" />.
+
More exactly, let $D_0$ be a free Abelian semi-group with a unit element, the free generators of which are known as prime divisors, and let a homomorphism $\phi : A^* \to D_0$ be given. The homomorphism $\phi$ defines a theory of divisors of the ring $A$ if it satisfies the following conditions.
  
2) For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370029.png" />,
+
1) For $a,b\in A^*$ the element $a$ divides $b$ in $A$ if and only if $(a)$ divides $(b)$ in $D_0$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370030.png" /></td> </tr></table>
+
2) For any $a\in D_0$,
  
is an ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370031.png" />.
+
$$\{ a\in A \;|\; \fa \textrm{ divides } (a)\} \cup \{ 0 \}$$
 +
is an ideal of $A$.
  
3) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370032.png" /> and if, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370034.png" /> is divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370035.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370036.png" /> is divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370037.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370038.png" />.
+
3) If $\fa,\fa'\in D_0$ and if, for any $a\in A^*$, $(a)$ is divisible by $\fa$ if and only if $(a)$ is divisible by $\fa'$, then $\fa=\fa'$.
  
If a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370039.png" /> exists, it is uniquely determined, up to an isomorphism, by the conditions just listed. The kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370040.png" /> coincides with the group of unit elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370041.png" />. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370042.png" /> are called positive divisors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370043.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370044.png" /> be the field of quotients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370045.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370046.png" /> be the free Abelian group generated by the set of prime divisors. Then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370048.png" />, it is possible to define a principal divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370049.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370050.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370051.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370052.png" />. The elements of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370053.png" /> are known as fractional divisors (or, simply, divisors) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370054.png" /> (or of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370055.png" />). Any divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370056.png" /> may be written in the form
+
If a homomorphism $\phi$ exists, it is uniquely determined, up to an isomorphism, by the conditions just listed. The kernel $\ker \phi$ coincides with the group of unit elements of $A$. The elements of $D_0$ are called positive divisors of $A$. Let $K$ be the field of quotients of $A$, and let $D\supset D_0$ be the free Abelian group generated by the set of prime divisors. Then for any $c \in K$, $K^* = K\setminus 0$, it is possible to define a principal divisor $\def\f#1{\mathfrak {#1}}\f c \in D$. If $c = a/b$ where $a,b\in A^*$, then $(c) = (a)/(b)$. The elements of the group $D$ are known as fractional divisors (or, simply, divisors) of $A$ (or of $K$). Any divisor $\f a\in D$ may be written in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370057.png" /></td> </tr></table>
+
$$\f a = \f p_1^{n_1}\cdots\f p_r^{n_r},$$
 +
where $\f p_i$ is a prime divisor. In additive notation: $\f a = n_1\f p_1+\cdots+n_r\f p_r$. If $a\in K^*$ and $(a) = \sum n_i\f p_i$, the mapping $a\mapsto \sum n_i$ is a discrete valuation on $K$, and is known as the essential valuation of $K$. The homomorphism $\phi$ is extended to a homomorphism $\psi : K^* \to D$, where $\psi(c) = (c)$, contained in the exact sequence
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370058.png" /> is a prime divisor. In additive notation: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370059.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370061.png" />, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370062.png" /> is a discrete valuation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370063.png" />, and is known as the essential valuation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370064.png" />. The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370065.png" /> is extended to a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370066.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370067.png" />, contained in the exact sequence
+
$$1\to U(A) \to K^* \xrightarrow{\psi} D \to C(A) \to 1.$$
 +
Here $U(A)$ is the group of invertible elements of $A$, while the group $C(A)$ is called the divisor class group of $A$ (or of $K$). Two divisors which belong to the same equivalence class by the subgroup of principal divisors are called equivalent (in algebraic geometry, where a large number of other divisor equivalences are considered, this equivalence is known as linear).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370068.png" /></td> </tr></table>
+
The theory of divisors is valid for any
 +
[[Dedekind ring|Dedekind ring]], in particular for rings of integral elements in algebraic number fields, and the elements of $D_0$ are in one-to-one correspondence with the non-zero ideals of the ring $A$ (to the divisor $\f a$ corresponds the ideal of all elements of $A$ that are divisible by $\f a$). This is why, in a Dedekind ring, the group of divisors is also called the group of ideals, while the divisor class group is called the ideal class group.
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370069.png" /> is the group of invertible elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370070.png" />, while the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370071.png" /> is called the divisor class group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370072.png" /> (or of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370073.png" />). Two divisors which belong to the same equivalence class by the subgroup of principal divisors are called equivalent (in algebraic geometry, where a large number of other divisor equivalences are considered, this equivalence is known as linear).
+
The divisor class group of an algebraic number field is finite, and many problems in algebraic number theory involve the computation of its order (the number of classes) and structure
 +
{{Cite|BoSh}}.
  
The theory of divisors is valid for any [[Dedekind ring|Dedekind ring]], in particular for rings of integral elements in algebraic number fields, and the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370074.png" /> are in one-to-one correspondence with the non-zero ideals of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370075.png" /> (to the divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370076.png" /> corresponds the ideal of all elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370077.png" /> that are divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370078.png" />). This is why, in a Dedekind ring, the group of divisors is also called the group of ideals, while the divisor class group is called the ideal class group.
+
More generally, the theory of divisors is valid for Krull rings (cf.
 +
[[Krull ring|Krull ring]],
 +
{{Cite|Bo}}). In such a case the role of $D_0$ is played by the semi-group of divisorial ideals (cf.
 +
[[Divisorial ideal|Divisorial ideal]]) of the ring, while the part of $D$ is played by the group of fractional divisorial ideals.
  
The divisor class group of an algebraic number field is finite, and many problems in algebraic number theory involve the computation of its order (the number of classes) and structure [[#References|[2]]].
+
The concept of a Weil divisor is a generalization of the concept of a fractional divisorial ideal of a commutative ring to algebraic varieties or analytic spaces $X$. The name Weil divisor is given to integral formal finite linear combinations $\sum n_WW $ of irreducible closed subspaces $W$ in $X$ of codimension 1. A Weil divisor is called positive, or effective, if all $n_W \ge 0$. All Weil divisors form a group $Z^1(X)$ (the group of Weil divisors). If $X$ is a smooth algebraic variety, the concept of a Weil divisor coincides with that of an
 +
[[Algebraic cycle|algebraic cycle]] of codimension 1.
  
More generally, the theory of divisors is valid for Krull rings (cf. [[Krull ring|Krull ring]], [[#References|[11]]]). In such a case the role of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370079.png" /> is played by the semi-group of divisorial ideals (cf. [[Divisorial ideal|Divisorial ideal]]) of the ring, while the part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370080.png" /> is played by the group of fractional divisorial ideals.
+
If $A$ is a Noetherian Krull ring, each prime divisorial ideal $\f p$ in $A$ defines a subspace $V(\f p)$ of codimension 1 in the scheme $X=\def\Spec{\textrm{Spec}}\Spec(A)$, while each divisor $\f a = \f p_1^{n_1}\cdots\f p_k^{n_k}$ may thus be identified with the Weil divisor $\sum n_iV((\f p)$.
  
The concept of a Weil divisor is a generalization of the concept of a fractional divisorial ideal of a commutative ring to algebraic varieties or analytic spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370081.png" />. The name Weil divisor is given to integral formal finite linear combinations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370082.png" /> of irreducible closed subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370083.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370084.png" /> of codimension 1. A Weil divisor is called positive, or effective, if all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370085.png" />. All Weil divisors form a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370086.png" /> (the group of Weil divisors). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370087.png" /> is a smooth algebraic variety, the concept of a Weil divisor coincides with that of an [[Algebraic cycle|algebraic cycle]] of codimension 1.
+
Let $X$ be a normal scheme and let $f$ be a rational (meromorphic in the analytic case) function on $X$. A principal Weil divisor is defined canonically:
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370088.png" /> is a Noetherian Krull ring, each prime divisorial ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370089.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370090.png" /> defines a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370091.png" /> of codimension 1 in the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370092.png" />, while each divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370093.png" /> may thus be identified with the Weil divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370094.png" />.
+
$$(f) = \sum n_W W.$$
 +
Here $n_W$ is the value of the discrete valuation of the ring $\def\c#1{\mathcal{#1}}\c O_{X,W}$ of the subvariety $W$ on the representative of $f$ in $\c O_{X,W}$. If
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370095.png" /> be a normal scheme and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370096.png" /> be a rational (meromorphic in the analytic case) function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370097.png" />. A principal Weil divisor is defined canonically:
+
$$(f) = \sum n_W^+W + \sum n_W^- W,$$
 +
where $n_w^+ > 0$ and $n_w^- < 0$, the Weil divisor $(f)_0 = \sum n_W^+ W.$ is known as the divisor of the zeros, while $\sum n_W^- W$ is known as the divisor of the poles of the function $f$. The set of principal Weil divisors is a subgroup $Z_p^1(X)$ of the group $Z^1(X)$. The quotient group $Z^1(X)/Z_p^1(X)$ is denoted by $C(X)$ and is known as the divisor class group of the scheme $X$. If $X=\Spec\; A$, where $A$ is a Noetherian Krull ring, $C(X)$ coincides with the divisor class group of the ring $A$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370098.png" /></td> </tr></table>
+
Let $K$ be an algebraic function field. A divisor of $K$ is sometimes defined as a formal integral combination of discrete valuations of rank 1 of $K$. If $K$ is a field of algebraic functions in one variable, each such divisor may be identified with the Weil divisor of its complete non-singular model.
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d03370099.png" /> is the value of the discrete valuation of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700100.png" /> of the subvariety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700101.png" /> on the representative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700102.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700103.png" />. If
+
Let $X$ be a regular scheme or a complex variety and let $D=\sum n_W W$ be a Weil divisor. For any point $x\in X$ there exists an open neighbourhood $U$ such that the restriction of $D$ on $U$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700104.png" /></td> </tr></table>
+
$$D|_U = \sum n_W(W\cap U)$$
 +
is the principal divisor $(f_U)$ for a certain meromorphic function $f_U$ on $U$. The function $f_U$ is uniquely defined, up to an invertible function on $U$, and is known as the local equation of the divisor $D$ in the neighbourhood $U$, while the correspondence $U\mapsto f_U$ defines a section of the sheaf $M_X/\c O_X^*$. In general, a Cartier divisor on a ringed space $(X,\c O_X)$ is defined as a global section of the sheaf $M_X^*/\c O_X^*M_X/\c O_X^*$ of germs of divisors. Here $M_X$ denotes the sheaf of germs of meromorphic (or rational) functions on $X$, i.e. the sheaf which brings into correspondence each open $U\subset X$ with the total quotient ring of the ring $\Gamma(U,\c O_X)$, while $M_X^*$ and $\c O_X^*$ are the sheaves of invertible elements in $M_X$ and $\c O_X$, respectively. A Cartier divisor may be defined by a selection of local equations
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700105.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700106.png" />, the Weil divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700107.png" /> is known as the divisor of the zeros, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700108.png" /> is known as the divisor of the poles of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700109.png" />. The set of principal Weil divisors is a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700110.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700111.png" />. The quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700112.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700113.png" /> and is known as the divisor class group of the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700114.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700115.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700116.png" /> is a Noetherian Krull ring, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700117.png" /> coincides with the divisor class group of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700118.png" />.
+
$$f_i \in \Gamma(U_i,M_X^*),$$
 +
where $\{U_i\}$ is an open covering of $X$, and the functions $f_i/f_j$ should be a section of the sheaf $\c O_X^*$ over $U_i\cap U_j$. In particular, a meromorphic function $f$ defines a divisor $\def\div{\textrm{div}}\div(f)$ known as a principal divisor. The set of $x\in M$ such that $(f_i)_X\notin \c O_{X,x}^* $ is called the support of the divisor. The Cartier divisors form an Abelian group $\def\Div{\textrm{Div}}\Div(X)$, while the principal divisors form a subgroup of it, $\Div_l(X)$. Each divisor $D\in \Div(X) $ defines an invertible sheaf $\c O_X(D)$ contained in $M_X$: If $D$ is represented by the local equations $f_i$ on the covering $\{U_i\}$, then
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700119.png" /> be an algebraic function field. A divisor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700120.png" /> is sometimes defined as a formal integral combination of discrete valuations of rank 1 of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700121.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700122.png" /> is a field of algebraic functions in one variable, each such divisor may be identified with the Weil divisor of its complete non-singular model.
+
$$\c O_X(D)|_{U_i} = f_i^{-1}\c O|_{U_i} \subset M_X|_{U_i}$$
 
+
The correspondence $D\mapsto \c O_X(D)$ is a homomorphism of the group $\Div(X)$ into the
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700123.png" /> be a regular scheme or a complex variety and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700124.png" /> be a Weil divisor. For any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700125.png" /> there exists an open neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700126.png" /> such that the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700127.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700128.png" />,
+
[[Picard group|Picard group]] $\def\Pic{\textrm{Pic}}\Pic(X) = H^1(X,\c O_X^*)$. This homomorphism is included in the exact sequence
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700129.png" /></td> </tr></table>
 
 
 
is the principal divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700130.png" /> for a certain meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700131.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700132.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700133.png" /> is uniquely defined, up to an invertible function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700134.png" />, and is known as the local equation of the divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700135.png" /> in the neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700136.png" />, while the correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700137.png" /> defines a section of the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700138.png" />. In general, a Cartier divisor on a ringed space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700139.png" /> is defined as a global section of the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700140.png" /> of germs of divisors. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700141.png" /> denotes the sheaf of germs of meromorphic (or rational) functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700142.png" />, i.e. the sheaf which brings into correspondence each open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700143.png" /> with the total quotient ring of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700144.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700145.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700146.png" /> are the sheaves of invertible elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700147.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700148.png" />, respectively. A Cartier divisor may be defined by a selection of local equations
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700149.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700150.png" /> is an open covering of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700151.png" />, and the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700152.png" /> should be a section of the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700153.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700154.png" />. In particular, a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700155.png" /> defines a divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700156.png" /> known as a principal divisor. The set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700157.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700158.png" /> is called the support of the divisor. The Cartier divisors form an Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700159.png" />, while the principal divisors form a subgroup of it, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700160.png" />. Each divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700161.png" /> defines an invertible sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700162.png" /> contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700163.png" />: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700164.png" /> is represented by the local equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700165.png" /> on the covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700166.png" />, then
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700167.png" /></td> </tr></table>
 
 
 
The correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700168.png" /> is a homomorphism of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700169.png" /> into the [[Picard group|Picard group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700170.png" />. This homomorphism is included in the exact sequence
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700171.png" /></td> </tr></table>
 
  
 +
$$\Gamma(X,M_X^*)\to \Div(X)\xrightarrow{\delta} \Pic(X) \to H_1(X,M_X^*),$$
 
which is obtained from the exact sequence of sheaves
 
which is obtained from the exact sequence of sheaves
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700172.png" /></td> </tr></table>
+
$$0\to \c O)X^*\to M_X^* \to M_X^*/\c O_X^* \to 0.$$
 
+
Thus, $\ker\delta = \Div_l(X)$. If $D-D_1$ is a principal divisor, $D$ and $D_1$ are said to be linearly equivalent. If $X$ is a quasi-projective algebraic variety or a complex
Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700173.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700174.png" /> is a principal divisor, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700175.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700176.png" /> are said to be linearly equivalent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700177.png" /> is a quasi-projective algebraic variety or a complex [[Stein space|Stein space]], the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700178.png" /> is surjective and induces an isomorphism of the group of classes of linearly equivalent divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700179.png" /> onto the Picard group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700180.png" />.
+
[[Stein space|Stein space]], the homomorphism $\delta : \Div(X) \to \Pic(X)$ is surjective and induces an isomorphism of the group of classes of linearly equivalent divisors $\Div(X)/\Div_l(X)$ onto the Picard group $\Pic(X)$.
 
 
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700181.png" /> is a [[Complex space|complex space]], the problem arises as to when a given divisor is a principal divisor; this is the so-called second Cousin problem (cf. [[Cousin problems|Cousin problems]]). For example, the divisor class group on a complex Stein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700182.png" /> is trivial if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700183.png" />.
 
  
A divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700184.png" /> is said to be effective (or positive) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700185.png" />. In such a case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700186.png" /> is a sheaf of ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700187.png" />; the support of a divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700188.png" /> with structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700189.png" /> forms a subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700190.png" />, which is also denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700191.png" />.
+
If $X$ is a
 +
[[Complex space|complex space]], the problem arises as to when a given divisor is a principal divisor; this is the so-called second Cousin problem (cf.
 +
[[Cousin problems|Cousin problems]]). For example, the divisor class group on a complex Stein space $(X,\c O)$ is trivial if and only if $H^2(X,\Z)=0$.
  
For a normal Noetherian scheme or a [[Normal analytic space|normal analytic space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700192.png" /> there is a natural homomorphism:
+
A divisor $D$ is said to be effective (or positive) if $\c O_X\subset \c O_X(D)$. In such a case $\c O_X(-D)$ is a sheaf of ideals in $\c O_X$; the support of a divisor $D$ with structure sheaf $\c O_X/\c O_X(-D)$ forms a subspace in $X$, which is also denoted by $D$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700193.png" /></td> </tr></table>
+
For a normal Noetherian scheme or a
 +
[[Normal analytic space|normal analytic space]] $X$ there is a natural homomorphism:
  
mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700194.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700195.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700196.png" /> and where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700197.png" /> is a local equation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700198.png" /> in the neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700199.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700200.png" /> is the discrete valuation corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700201.png" /> [[#References|[3]]]. The homomorphism cyc is injective and maps effective divisors to effective cycles; cyc is bijective if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700202.png" /> is locally factorial (e.g. when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700203.png" /> is a non-singular scheme or an analytic manifold). If cyc is bijective, Weil and Cartier divisors coincide.
+
$$\def\cyc{\textrm{cyc}} \cyc : \Div (X) \to Z^1(X),$$
 +
mapping $D\in\Div(X)$ into $\sum_n_W W$, where $n_W = \nu_W(f)$ and where $f$ is a local equation of $D$ in the neighbourhood $W$, while $\nu_W$ is the discrete valuation corresponding to $W$
 +
{{Cite|We}}. The homomorphism cyc is injective and maps effective divisors to effective cycles; cyc is bijective if and only if $X$ is locally factorial (e.g. when $X$ is a non-singular scheme or an analytic manifold). If cyc is bijective, Weil and Cartier divisors coincide.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700204.png" /> be a morphism of schemes which is flat in codimension 1. Then, for any Cartier or Weil divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700205.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700206.png" /> the inverse image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700207.png" /> is defined; also, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700208.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700209.png" /> is a homomorphism of groups which maps principal divisors to principal ones, and thus defines a homomorphism of groups
+
Let $f:X'\to X$ be a morphism of schemes which is flat in codimension 1. Then, for any Cartier or Weil divisor $D$ on $X$ the inverse image $f^*(D)$ is defined; also, $\cyc(f^*(D)) = f^*(\cyc(D))$. The mapping $D\to f^*(D)$ is a homomorphism of groups which maps principal divisors to principal ones, and thus defines a homomorphism of groups
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700210.png" /></td> </tr></table>
 
  
 +
$$f^* : \Pic(X)\to\Pic(X')$$
 
(respectively,
 
(respectively,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700211.png" /></td> </tr></table>
+
$$f^* : C(X)\to C(X')).$$
 +
If $X'$ is an open set in $X$ whose codimension of the complement is at least 2 and if $f$ is the imbedding of $X'$ into $X$, then $f^* : C(X)\to C(X')$ is an isomorphism, while $f^* : \Pic(X)\to\Pic(X')$ is an isomorphism if the scheme $X$ is locally factorial.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700212.png" /> is an open set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700213.png" /> whose codimension of the complement is at least 2 and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700214.png" /> is the imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700215.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700216.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700217.png" /> is an isomorphism, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700218.png" /> is an isomorphism if the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700219.png" /> is locally factorial.
+
Let $X$ be a smooth projective variety over $\C$. Any divisor $D$ on $X$ defines a homology class
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700220.png" /> be a smooth projective variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700221.png" />. Any divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700222.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700223.png" /> defines a homology class
+
$$[D] \in H_{2\dim X -2}(X,\Z).$$
 +
The cohomology class which is Poincaré dual to $[D]$ is identical with the
 +
[[Chern class|Chern class]] $c_1(\c O_X(D))\in H^2(X,\Z)$ of the invertible sheaf $\c O_X(D)$. Thus there appears a homological equivalence on $\Div(X)$. There exists a theory of intersections of divisors
 +
{{Cite|Sh}}, leading to the concept of algebraic equivalence of divisors (cf.
 +
[[Algebraic cycle|Algebraic cycle]]). The group
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700224.png" /></td> </tr></table>
+
$$\def\a{\alpha}\Pic^0(X) = \Div_\a(X)/\Div_l(X),$$
 
+
where $\Div_\a(X)$ denotes the group of divisors which are algebraically equivalent to zero, is naturally provided with the structure of an Abelian variety (the
The cohomology class which is Poincaré dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700225.png" /> is identical with the [[Chern class|Chern class]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700226.png" /> of the invertible sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700227.png" />. Thus there appears a homological equivalence on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700228.png" />. There exists a theory of intersections of divisors [[#References|[7]]], leading to the concept of algebraic equivalence of divisors (cf. [[Algebraic cycle|Algebraic cycle]]). The group
+
[[Picard variety|Picard variety]]; if $X$ is a curve, it is also called the
 
+
[[Jacobi variety|Jacobi variety]] of $X$). The group $\Div(X)/\Div_\a(X)$, known as the Néron–Severi group, has a finite number of generators. The last two facts also apply to algebraic varieties over an arbitrary field.
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700229.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700230.png" /> denotes the group of divisors which are algebraically equivalent to zero, is naturally provided with the structure of an Abelian variety (the [[Picard variety|Picard variety]]; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700231.png" /> is a curve, it is also called the [[Jacobi variety|Jacobi variety]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700232.png" />). The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700233.png" />, known as the Néron–Severi group, has a finite number of generators. The last two facts also apply to algebraic varieties over an arbitrary field.
 
 
 
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700234.png" /> is a one-dimensional complex manifold (a [[Riemann surface|Riemann surface]]), a divisor on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700235.png" /> is a finite linear combination
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700236.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700237.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700238.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700239.png" /> is called the degree of the divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700240.png" />. For a compact Riemann surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700241.png" /> of genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700242.png" /> the group of divisor classes of degree zero is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700243.png" />-dimensional Abelian variety and is identical with the [[Picard variety|Picard variety]] (or with the [[Jacobi variety|Jacobi variety]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700244.png" /> is a meromorphic function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700245.png" />, a principal divisor is
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700246.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700247.png" /> are the zeros and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700248.png" /> are the poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700249.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700250.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700251.png" /> are their multiplicities. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700252.png" />, i.e. a principal divisor has degree 0. A divisor of degree 0 on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700253.png" /> is principal if and only if there exists a singular one-dimensional chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700254.png" /> such that
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700255.png" /></td> </tr></table>
 
 
 
for all holomorphic forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700256.png" /> of degree 1 on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033700/d033700257.png" /> (Abel's theorem). See also [[Abelian differential|Abelian differential]].
 
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.E. Kummer, "Ueber die Zerlegung der aus Wurzeln der Einheit gebildeten complexe Zahlen in ihre Primfaktoren" ''J. Reine Angew. Math.'' , '''35''' (1847) pp. 327–367</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966) {{MR|0195803}} {{ZBL|0145.04902}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Weil, "Introduction à l'Aeetude des variétés kahlériennes" , Hermann (1958)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P. Cartier, "Questions de rationalité des diviseurs en géometrie algébrique" ''Bull. Soc. Math. France'' , '''86''' (1958) pp. 177–251 {{MR|0106223}} {{ZBL|0091.33501}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géometrie algébrique IV. Etude locale des schémas et des morphismes des schémas" ''Publ. Math. IHES'' : 32 (1967) {{MR|0238860}} {{ZBL|0144.19904}} {{ZBL|0135.39701}} {{ZBL|0136.15901}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> C. Chevalley, "Introduction to the theory of algebraic functions of one variable" , Amer. Math. Soc. (1951) {{MR|0042164}} {{ZBL|0045.32301}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) {{MR|0180696}} {{ZBL|0141.08601}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) {{MR|0533884}} {{ZBL|0444.32004}} </TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French) {{MR|0360549}} {{ZBL|0279.13001}} </TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) {{MR|0092855}} {{ZBL|0078.06602}} </TD></TR></table>
 
  
 +
If $X$ is a one-dimensional complex manifold (a
 +
[[Riemann surface|Riemann surface]]), a divisor on $X$ is a finite linear combination
  
 +
$$D=\sum_i k_ix_i,$$
 +
where $k_i\in\Z$, $x_i\in X$. The number $\sum k_i$ is called the degree of the divisor $D$. For a compact Riemann surface $X$ of genus $g$ the group of divisor classes of degree zero is a $g$-dimensional Abelian variety and is identical with the
 +
[[Picard variety|Picard variety]] (or with the
 +
[[Jacobi variety|Jacobi variety]]). If $f$ is a meromorphic function on $X$, a principal divisor is
  
====Comments====
+
$$\div(f) = \sum_i m_ix_i - \sum_j n_jy_j,$$
 +
where $x_i$ are the zeros and $y_j$ are the poles of $f$ and $m_i,$, $n_j$ are their multiplicities. Then $\sum_i m_i = \sum_j n_j,$, i.e. a principal divisor has degree 0. A divisor of degree 0 on $X$ is principal if and only if there exists a singular one-dimensional chain $C$ such that
  
 +
$$\partial C = D \textrm{ and } \int_C \omega = 0$$
 +
for all holomorphic forms $\omega$ of degree 1 on $X$ (Abel's theorem). See also
 +
[[Abelian differential|Abelian differential]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) pp. 178; 674; 179; 349; 525; 532; 535; 632; 743 {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) {{MR|0608414}} {{ZBL|0435.32004}} </TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Elements of mathematics. Commutative algebra", Addison-Wesley (1972) (Translated from French) {{MR|0360549}} {{ZBL|0279.13001}}
 +
|-
 +
|valign="top"|{{Ref|BoSh}}||valign="top"| Z.I. Borevich, I.R. Shafarevich, "Number theory", Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966) {{MR|0195803}} {{ZBL|0145.04902}}
 +
|-
 +
|valign="top"|{{Ref|Ca}}||valign="top"| P. Cartier, "Questions de rationalité des diviseurs en géometrie algébrique" ''Bull. Soc. Math. France'', '''86''' (1958) pp. 177–251 {{MR|0106223}} {{ZBL|0091.33501}}
 +
|-
 +
|valign="top"|{{Ref|Ch}}||valign="top"| C. Chevalley, "Introduction to the theory of algebraic functions of one variable", Amer. Math. Soc. (1951) {{MR|0042164}} {{ZBL|0045.32301}}
 +
|-
 +
|valign="top"|{{Ref|Ch2}}||valign="top"| S.S. Chern, "Complex manifolds without potential theory", Springer (1979) {{MR|0533884}} {{ZBL|0444.32004}}
 +
|-
 +
|valign="top"|{{Ref|Gr}}||valign="top"| A. Grothendieck, "Eléments de géometrie algébrique IV. Etude locale des schémas et des morphismes des schémas" ''Publ. Math. IHES'' : 32 (1967) {{MR|0238860}} {{ZBL|0144.19904}} {{ZBL|0135.39701}} {{ZBL|0136.15901}}
 +
|-
 +
|valign="top"|{{Ref|GrHa}}||valign="top"| P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry", Wiley (Interscience) (1978) pp. 178; 674; 179; 349; 525; 532; 535; 632; 743 {{MR|0507725}} {{ZBL|0408.14001}}
 +
|-
 +
|valign="top"|{{Ref|GuRo}}||valign="top"| R.C. Gunning, H. Rossi, "Analytic functions of several complex variables", Prentice-Hall (1965) {{MR|0180696}} {{ZBL|0141.08601}}
 +
|-
 +
|valign="top"|{{Ref|Ku}}||valign="top"| E.E. Kummer, "Ueber die Zerlegung der aus Wurzeln der Einheit gebildeten complexe Zahlen in ihre Primfaktoren" ''J. Reine Angew. Math.'', '''35''' (1847) pp. 327–367
 +
|-
 +
|valign="top"|{{Ref|Mu}}||valign="top"| D. Mumford, "Lectures on curves on an algebraic surface", Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}}
 +
|-
 +
|valign="top"|{{Ref|Sh}}||valign="top"| I.R. Shafarevich, "Basic algebraic geometry", Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}}
 +
|-
 +
|valign="top"|{{Ref|Sp}}||valign="top"| G. Springer, "Introduction to Riemann surfaces", Addison-Wesley (1957) {{MR|0092855}} {{ZBL|0078.06602}} ||valign="top"|{{Ref|Ha}}||valign="top"| R. Hartshorne, "Algebraic geometry", Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}}
 +
|-
 +
|valign="top"|{{Ref|We}}||valign="top"| A. Weil, "Introduction à l'Aeetude des variétés kahlériennes", Hermann (1958)
 +
|-
 +
|valign="top"|{{Ref|We2}}||valign="top"| R.O. Wells jr., "Differential analysis on complex manifolds", Springer (1980) {{MR|0608414}} {{ZBL|0435.32004}}
 +
|-
 +
|}

Revision as of 22:16, 20 October 2012


A generalization of the concept of a divisor of an element of a commutative ring. First introduced by E.E. Kummer [Ku] under the name of "ideal divisor" in his studies on cyclotomic fields.

The theory of divisors for an integral commutative ring $A$ with a unit element consists in constructing a homomorphism $\def\phi{\varphi}\phi$ from the multiplicative semi-group $A^*$ of non-zero elements of $A$ into some semi-group $D_0$ with unique factorization, the elements of which are known as (integral) divisors of the ring $A$. The theory of divisors makes it possible to reduce a series of problems connected with prime factorization in $A$, where this factorization may be not unique, to the problem of prime factorization in $D_0$. The image $\phi(a)\in D_0$ of an element $a\in A^*$ is denoted by $(a)$ and is called the principal divisor of the element $a$. One says that $a\in A^*$ is divisible by the divisor $\def\fa{\mathfrak{a}} \fa\in D_0$ if $\fa$ divides $(a)$ in $D_0$.

More exactly, let $D_0$ be a free Abelian semi-group with a unit element, the free generators of which are known as prime divisors, and let a homomorphism $\phi : A^* \to D_0$ be given. The homomorphism $\phi$ defines a theory of divisors of the ring $A$ if it satisfies the following conditions.

1) For $a,b\in A^*$ the element $a$ divides $b$ in $A$ if and only if $(a)$ divides $(b)$ in $D_0$.

2) For any $a\in D_0$,

$$\{ a\in A \;|\; \fa \textrm{ divides } (a)\} \cup \{ 0 \}$$ is an ideal of $A$.

3) If $\fa,\fa'\in D_0$ and if, for any $a\in A^*$, $(a)$ is divisible by $\fa$ if and only if $(a)$ is divisible by $\fa'$, then $\fa=\fa'$.

If a homomorphism $\phi$ exists, it is uniquely determined, up to an isomorphism, by the conditions just listed. The kernel $\ker \phi$ coincides with the group of unit elements of $A$. The elements of $D_0$ are called positive divisors of $A$. Let $K$ be the field of quotients of $A$, and let $D\supset D_0$ be the free Abelian group generated by the set of prime divisors. Then for any $c \in K$, $K^* = K\setminus 0$, it is possible to define a principal divisor $\def\f#1{\mathfrak {#1}}\f c \in D$. If $c = a/b$ where $a,b\in A^*$, then $(c) = (a)/(b)$. The elements of the group $D$ are known as fractional divisors (or, simply, divisors) of $A$ (or of $K$). Any divisor $\f a\in D$ may be written in the form

$$\f a = \f p_1^{n_1}\cdots\f p_r^{n_r},$$ where $\f p_i$ is a prime divisor. In additive notation: $\f a = n_1\f p_1+\cdots+n_r\f p_r$. If $a\in K^*$ and $(a) = \sum n_i\f p_i$, the mapping $a\mapsto \sum n_i$ is a discrete valuation on $K$, and is known as the essential valuation of $K$. The homomorphism $\phi$ is extended to a homomorphism $\psi : K^* \to D$, where $\psi(c) = (c)$, contained in the exact sequence

$$1\to U(A) \to K^* \xrightarrow{\psi} D \to C(A) \to 1.$$ Here $U(A)$ is the group of invertible elements of $A$, while the group $C(A)$ is called the divisor class group of $A$ (or of $K$). Two divisors which belong to the same equivalence class by the subgroup of principal divisors are called equivalent (in algebraic geometry, where a large number of other divisor equivalences are considered, this equivalence is known as linear).

The theory of divisors is valid for any Dedekind ring, in particular for rings of integral elements in algebraic number fields, and the elements of $D_0$ are in one-to-one correspondence with the non-zero ideals of the ring $A$ (to the divisor $\f a$ corresponds the ideal of all elements of $A$ that are divisible by $\f a$). This is why, in a Dedekind ring, the group of divisors is also called the group of ideals, while the divisor class group is called the ideal class group.

The divisor class group of an algebraic number field is finite, and many problems in algebraic number theory involve the computation of its order (the number of classes) and structure [BoSh].

More generally, the theory of divisors is valid for Krull rings (cf. Krull ring, [Bo]). In such a case the role of $D_0$ is played by the semi-group of divisorial ideals (cf. Divisorial ideal) of the ring, while the part of $D$ is played by the group of fractional divisorial ideals.

The concept of a Weil divisor is a generalization of the concept of a fractional divisorial ideal of a commutative ring to algebraic varieties or analytic spaces $X$. The name Weil divisor is given to integral formal finite linear combinations $\sum n_WW $ of irreducible closed subspaces $W$ in $X$ of codimension 1. A Weil divisor is called positive, or effective, if all $n_W \ge 0$. All Weil divisors form a group $Z^1(X)$ (the group of Weil divisors). If $X$ is a smooth algebraic variety, the concept of a Weil divisor coincides with that of an algebraic cycle of codimension 1.

If $A$ is a Noetherian Krull ring, each prime divisorial ideal $\f p$ in $A$ defines a subspace $V(\f p)$ of codimension 1 in the scheme $X=\def\Spec{\textrm{Spec}}\Spec(A)$, while each divisor $\f a = \f p_1^{n_1}\cdots\f p_k^{n_k}$ may thus be identified with the Weil divisor $\sum n_iV((\f p)$.

Let $X$ be a normal scheme and let $f$ be a rational (meromorphic in the analytic case) function on $X$. A principal Weil divisor is defined canonically:

$$(f) = \sum n_W W.$$ Here $n_W$ is the value of the discrete valuation of the ring $\def\c#1{\mathcal{#1}}\c O_{X,W}$ of the subvariety $W$ on the representative of $f$ in $\c O_{X,W}$. If

$$(f) = \sum n_W^+W + \sum n_W^- W,$$ where $n_w^+ > 0$ and $n_w^- < 0$, the Weil divisor $(f)_0 = \sum n_W^+ W.$ is known as the divisor of the zeros, while $\sum n_W^- W$ is known as the divisor of the poles of the function $f$. The set of principal Weil divisors is a subgroup $Z_p^1(X)$ of the group $Z^1(X)$. The quotient group $Z^1(X)/Z_p^1(X)$ is denoted by $C(X)$ and is known as the divisor class group of the scheme $X$. If $X=\Spec\; A$, where $A$ is a Noetherian Krull ring, $C(X)$ coincides with the divisor class group of the ring $A$.

Let $K$ be an algebraic function field. A divisor of $K$ is sometimes defined as a formal integral combination of discrete valuations of rank 1 of $K$. If $K$ is a field of algebraic functions in one variable, each such divisor may be identified with the Weil divisor of its complete non-singular model.

Let $X$ be a regular scheme or a complex variety and let $D=\sum n_W W$ be a Weil divisor. For any point $x\in X$ there exists an open neighbourhood $U$ such that the restriction of $D$ on $U$,

$$D|_U = \sum n_W(W\cap U)$$ is the principal divisor $(f_U)$ for a certain meromorphic function $f_U$ on $U$. The function $f_U$ is uniquely defined, up to an invertible function on $U$, and is known as the local equation of the divisor $D$ in the neighbourhood $U$, while the correspondence $U\mapsto f_U$ defines a section of the sheaf $M_X/\c O_X^*$. In general, a Cartier divisor on a ringed space $(X,\c O_X)$ is defined as a global section of the sheaf $M_X^*/\c O_X^*M_X/\c O_X^*$ of germs of divisors. Here $M_X$ denotes the sheaf of germs of meromorphic (or rational) functions on $X$, i.e. the sheaf which brings into correspondence each open $U\subset X$ with the total quotient ring of the ring $\Gamma(U,\c O_X)$, while $M_X^*$ and $\c O_X^*$ are the sheaves of invertible elements in $M_X$ and $\c O_X$, respectively. A Cartier divisor may be defined by a selection of local equations

$$f_i \in \Gamma(U_i,M_X^*),$$ where $\{U_i\}$ is an open covering of $X$, and the functions $f_i/f_j$ should be a section of the sheaf $\c O_X^*$ over $U_i\cap U_j$. In particular, a meromorphic function $f$ defines a divisor $\def\div{\textrm{div}}\div(f)$ known as a principal divisor. The set of $x\in M$ such that $(f_i)_X\notin \c O_{X,x}^* $ is called the support of the divisor. The Cartier divisors form an Abelian group $\def\Div{\textrm{Div}}\Div(X)$, while the principal divisors form a subgroup of it, $\Div_l(X)$. Each divisor $D\in \Div(X) $ defines an invertible sheaf $\c O_X(D)$ contained in $M_X$: If $D$ is represented by the local equations $f_i$ on the covering $\{U_i\}$, then

$$\c O_X(D)|_{U_i} = f_i^{-1}\c O|_{U_i} \subset M_X|_{U_i}$$ The correspondence $D\mapsto \c O_X(D)$ is a homomorphism of the group $\Div(X)$ into the Picard group $\def\Pic{\textrm{Pic}}\Pic(X) = H^1(X,\c O_X^*)$. This homomorphism is included in the exact sequence

$$\Gamma(X,M_X^*)\to \Div(X)\xrightarrow{\delta} \Pic(X) \to H_1(X,M_X^*),$$ which is obtained from the exact sequence of sheaves

$$0\to \c O)X^*\to M_X^* \to M_X^*/\c O_X^* \to 0.$$ Thus, $\ker\delta = \Div_l(X)$. If $D-D_1$ is a principal divisor, $D$ and $D_1$ are said to be linearly equivalent. If $X$ is a quasi-projective algebraic variety or a complex Stein space, the homomorphism $\delta : \Div(X) \to \Pic(X)$ is surjective and induces an isomorphism of the group of classes of linearly equivalent divisors $\Div(X)/\Div_l(X)$ onto the Picard group $\Pic(X)$.

If $X$ is a complex space, the problem arises as to when a given divisor is a principal divisor; this is the so-called second Cousin problem (cf. Cousin problems). For example, the divisor class group on a complex Stein space $(X,\c O)$ is trivial if and only if $H^2(X,\Z)=0$.

A divisor $D$ is said to be effective (or positive) if $\c O_X\subset \c O_X(D)$. In such a case $\c O_X(-D)$ is a sheaf of ideals in $\c O_X$; the support of a divisor $D$ with structure sheaf $\c O_X/\c O_X(-D)$ forms a subspace in $X$, which is also denoted by $D$.

For a normal Noetherian scheme or a normal analytic space $X$ there is a natural homomorphism:

$$\def\cyc{\textrm{cyc}} \cyc : \Div (X) \to Z^1(X),$$ mapping $D\in\Div(X)$ into $\sum_n_W W$, where $n_W = \nu_W(f)$ and where $f$ is a local equation of $D$ in the neighbourhood $W$, while $\nu_W$ is the discrete valuation corresponding to $W$ [We]. The homomorphism cyc is injective and maps effective divisors to effective cycles; cyc is bijective if and only if $X$ is locally factorial (e.g. when $X$ is a non-singular scheme or an analytic manifold). If cyc is bijective, Weil and Cartier divisors coincide.

Let $f:X'\to X$ be a morphism of schemes which is flat in codimension 1. Then, for any Cartier or Weil divisor $D$ on $X$ the inverse image $f^*(D)$ is defined; also, $\cyc(f^*(D)) = f^*(\cyc(D))$. The mapping $D\to f^*(D)$ is a homomorphism of groups which maps principal divisors to principal ones, and thus defines a homomorphism of groups

$$f^* : \Pic(X)\to\Pic(X')$$ (respectively,

$$f^* : C(X)\to C(X')).$$ If $X'$ is an open set in $X$ whose codimension of the complement is at least 2 and if $f$ is the imbedding of $X'$ into $X$, then $f^* : C(X)\to C(X')$ is an isomorphism, while $f^* : \Pic(X)\to\Pic(X')$ is an isomorphism if the scheme $X$ is locally factorial.

Let $X$ be a smooth projective variety over $\C$. Any divisor $D$ on $X$ defines a homology class

$$[D] \in H_{2\dim X -2}(X,\Z).$$ The cohomology class which is Poincaré dual to $[D]$ is identical with the Chern class $c_1(\c O_X(D))\in H^2(X,\Z)$ of the invertible sheaf $\c O_X(D)$. Thus there appears a homological equivalence on $\Div(X)$. There exists a theory of intersections of divisors [Sh], leading to the concept of algebraic equivalence of divisors (cf. Algebraic cycle). The group

$$\def\a{\alpha}\Pic^0(X) = \Div_\a(X)/\Div_l(X),$$ where $\Div_\a(X)$ denotes the group of divisors which are algebraically equivalent to zero, is naturally provided with the structure of an Abelian variety (the Picard variety; if $X$ is a curve, it is also called the Jacobi variety of $X$). The group $\Div(X)/\Div_\a(X)$, known as the Néron–Severi group, has a finite number of generators. The last two facts also apply to algebraic varieties over an arbitrary field.

If $X$ is a one-dimensional complex manifold (a Riemann surface), a divisor on $X$ is a finite linear combination

$$D=\sum_i k_ix_i,$$ where $k_i\in\Z$, $x_i\in X$. The number $\sum k_i$ is called the degree of the divisor $D$. For a compact Riemann surface $X$ of genus $g$ the group of divisor classes of degree zero is a $g$-dimensional Abelian variety and is identical with the Picard variety (or with the Jacobi variety). If $f$ is a meromorphic function on $X$, a principal divisor is

$$\div(f) = \sum_i m_ix_i - \sum_j n_jy_j,$$ where $x_i$ are the zeros and $y_j$ are the poles of $f$ and $m_i,$, $n_j$ are their multiplicities. Then $\sum_i m_i = \sum_j n_j,$, i.e. a principal divisor has degree 0. A divisor of degree 0 on $X$ is principal if and only if there exists a singular one-dimensional chain $C$ such that

$$\partial C = D \textrm{ and } \int_C \omega = 0$$ for all holomorphic forms $\omega$ of degree 1 on $X$ (Abel's theorem). See also Abelian differential.

References

[Bo] N. Bourbaki, "Elements of mathematics. Commutative algebra", Addison-Wesley (1972) (Translated from French) MR0360549 Zbl 0279.13001
[BoSh] Z.I. Borevich, I.R. Shafarevich, "Number theory", Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966) MR0195803 Zbl 0145.04902
[Ca] P. Cartier, "Questions de rationalité des diviseurs en géometrie algébrique" Bull. Soc. Math. France, 86 (1958) pp. 177–251 MR0106223 Zbl 0091.33501
[Ch] C. Chevalley, "Introduction to the theory of algebraic functions of one variable", Amer. Math. Soc. (1951) MR0042164 Zbl 0045.32301
[Ch2] S.S. Chern, "Complex manifolds without potential theory", Springer (1979) MR0533884 Zbl 0444.32004
[Gr] A. Grothendieck, "Eléments de géometrie algébrique IV. Etude locale des schémas et des morphismes des schémas" Publ. Math. IHES : 32 (1967) MR0238860 Zbl 0144.19904 Zbl 0135.39701 Zbl 0136.15901
[GrHa] P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry", Wiley (Interscience) (1978) pp. 178; 674; 179; 349; 525; 532; 535; 632; 743 MR0507725 Zbl 0408.14001
[GuRo] R.C. Gunning, H. Rossi, "Analytic functions of several complex variables", Prentice-Hall (1965) MR0180696 Zbl 0141.08601
[Ku] E.E. Kummer, "Ueber die Zerlegung der aus Wurzeln der Einheit gebildeten complexe Zahlen in ihre Primfaktoren" J. Reine Angew. Math., 35 (1847) pp. 327–367
[Mu] D. Mumford, "Lectures on curves on an algebraic surface", Princeton Univ. Press (1966) MR0209285 Zbl 0187.42701
[Sh] I.R. Shafarevich, "Basic algebraic geometry", Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001
[Sp] G. Springer, "Introduction to Riemann surfaces", Addison-Wesley (1957) MR0092855 Zbl 0078.06602 [Ha] R. Hartshorne, "Algebraic geometry", Springer (1977) MR0463157 Zbl 0367.14001
[We] A. Weil, "Introduction à l'Aeetude des variétés kahlériennes", Hermann (1958)
[We2] R.O. Wells jr., "Differential analysis on complex manifolds", Springer (1980) MR0608414 Zbl 0435.32004
How to Cite This Entry:
Divisor (algebraic geometry). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Divisor_(algebraic_geometry)&oldid=23815
This article was adapted from an original article by V.I. DanilovL.V. Kuz'minA.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article