Namespaces
Variants
Actions

Congruence subgroup

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 20G30 [MSN][ZBL]


A conguence subgroup is a subgroup $H$ of the general linear group $\def\GL{\textrm{GL}}\GL(n,R)$ over a ring $R$ with the following property: There exists a non-zero two-sided ideal $\def\fp{\mathfrak{p}}\fp$ of $R$ such that $H\supseteq \GL(n,R,\fp)$, where

$$\GL(n,R,\fp) = \ker(\GL(n,R)\to \GL(n,R/\fp)),$$ that is, $H$ contains all matrices in $\GL(n,R)$ that are congruent to the unit matrix modulo $\fp$. More generally, a subgroup $H$ of a linear group $\def\G{\Gamma}\G$ of degree $n$ over $R$ is said to be a congruence subgroup if

$$H\supseteq \G\cap\GL(n,R,\fp)$$ for some non-zero two-sided ideal $\fp\subseteq$.

When

$$H = \G\cap\GL(n,R,\fp)$$ $H$ is said to be the principal congruence subgroup corresponding to $\fp$. The concept of a congruence subgroup arose first for $R=\Z$. It is particularly effective and important for a Dedekind ring $R$ in the case $\G=G\cap\GL(n,R)$, where $G$ is an algebraic group defined over the field of fractions of $R$.

References

[BaMiSe] H. Bass, J. Milnor, J.-P. Serre, "Solutions of the congruence subgroup problem for $\textrm{SL}_n$ ($n\ge 3$) and $\textrm{Sp}_{2n}$ ($n\ge 2$)" Publ. Math. IHES, 33 (1967) pp. 421–499 MR0244257 Zbl 0174.05203
How to Cite This Entry:
Congruence subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Congruence_subgroup&oldid=35045
This article was adapted from an original article by V.P. Platonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article