Namespaces
Variants
Actions

Difference between revisions of "Co-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX partly done)
(TeX partly done)
Line 4: Line 4:
 
$$
 
$$
 
and
 
and
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c0226706.png" /></td> </tr></table>
+
\begin{array}{ccccc} A \otimes A & \stackrel{\phi}{\leftarrow} & A & \stackrel{\phi}{\rightarrow} & A \otimes A \\ & \searrow\,\epsilon\otimes1\ & & 1\otimes\epsilon\,\swarrow & \\ & & A & & \end{array}
 
+
$$
 
are commutative. In other words, a co-algebra is the dual concept (in the sense of category theory) to the concept of an associative algebra over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c0226707.png" />.
 
are commutative. In other words, a co-algebra is the dual concept (in the sense of category theory) to the concept of an associative algebra over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c0226707.png" />.
  
Line 12: Line 12:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR>
 +
</table>
  
  
  
 
====Comments====
 
====Comments====
Given a co-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c0226708.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c0226709.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267010.png" /> be the module of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267011.png" />-module homomorphisms from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267012.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267013.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267014.png" /> define the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267015.png" /> by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267017.png" /> is identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267018.png" />. For any two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267019.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267020.png" /> define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267021.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267022.png" />. Then the multiplication on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267023.png" /> can also be seen as the composite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267024.png" />. The element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267025.png" /> is a unit element for this multiplication making <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267026.png" /> an associative algebra with unit, the dual algebra. In general the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267027.png" /> is not an isomorphism and there is no natural <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267028.png" />-module homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267029.png" />. Thus there is no equally natural construction associating a co-algebra to an algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267030.png" />, even when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267031.png" /> is a field. In that case there does however exist an [[Adjoint functor|adjoint functor]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267032.png" /> to the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267033.png" /> which associates to a co-algebra its dual algebra, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267034.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267038.png" /> denote, respectively, the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267039.png" />-algebras and the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267040.png" />-co-algebras, [[#References|[a2]]]; cf. also [[Hopf algebra|Hopf algebra]]. But if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267041.png" /> is free of finite rank over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267042.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267043.png" /> is an isomorphism and the dual co-algebra can be defined.
+
Given a co-algebra $A$ over $k$, let $A^*$ be the module of $k$-module homomorphisms from $A$ to $k$. For $f,g \in A^*$ define the product $fg : A \to k$ by the formula $fg : a \mapsto (f\otimes g)(\phi(a))$, where $k \otimes_k k$ is identified with $k$. For any two $k$-modules $M,N$ define $\rho : M^* \otimes N^* \to (M \otimes N)^*$ by $\rho(f\otimes g)(m\otimes n) = f(m)g(n)$. Then the multiplication on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267023.png" /> can also be seen as the composite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267024.png" />. The element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267025.png" /> is a unit element for this multiplication making <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267026.png" /> an associative algebra with unit, the dual algebra. In general the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267027.png" /> is not an isomorphism and there is no natural <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267028.png" />-module homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267029.png" />. Thus there is no equally natural construction associating a co-algebra to an algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267030.png" />, even when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267031.png" /> is a field. In that case there does however exist an [[Adjoint functor|adjoint functor]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267032.png" /> to the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267033.png" /> which associates to a co-algebra its dual algebra, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267034.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267038.png" /> denote, respectively, the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267039.png" />-algebras and the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267040.png" />-co-algebras, [[#References|[a2]]]; cf. also [[Hopf algebra|Hopf algebra]]. But if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267041.png" /> is free of finite rank over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267042.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267043.png" /> is an isomorphism and the dual co-algebra can be defined.
  
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267044.png" /> be the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267045.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267046.png" /> and define
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267044.png" /> be the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267045.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022670/c02267046.png" /> and define

Revision as of 19:49, 10 April 2017

A module $A$ over a commutative ring $k$ with two homomorphisms $\phi$ and $\epsilon$ such that the diagrams $$ \begin{array}{ccc} A & \stackrel{\phi}{\rightarrow} & A \otimes A \\ \phi\,\downarrow & \ & \downarrow\,1 \otimes \phi \\ A \otimes A & \stackrel{\phi \otimes 1}{\longrightarrow} & A \otimes A \end{array} $$ and $$ \begin{array}{ccccc} A \otimes A & \stackrel{\phi}{\leftarrow} & A & \stackrel{\phi}{\rightarrow} & A \otimes A \\ & \searrow\,\epsilon\otimes1\ & & 1\otimes\epsilon\,\swarrow & \\ & & A & & \end{array} $$ are commutative. In other words, a co-algebra is the dual concept (in the sense of category theory) to the concept of an associative algebra over a ring .

Co-algebras have acquired significance in connection with a number of topological applications such as, for example, the simplicial complex of a topological space, which is a co-algebra. Closely related to co-algebras are the Hopf algebras, which possess algebra and co-algebra structures simultaneously (cf. Hopf algebra).

References

[1] S. MacLane, "Homology" , Springer (1963)


Comments

Given a co-algebra $A$ over $k$, let $A^*$ be the module of $k$-module homomorphisms from $A$ to $k$. For $f,g \in A^*$ define the product $fg : A \to k$ by the formula $fg : a \mapsto (f\otimes g)(\phi(a))$, where $k \otimes_k k$ is identified with $k$. For any two $k$-modules $M,N$ define $\rho : M^* \otimes N^* \to (M \otimes N)^*$ by $\rho(f\otimes g)(m\otimes n) = f(m)g(n)$. Then the multiplication on can also be seen as the composite . The element is a unit element for this multiplication making an associative algebra with unit, the dual algebra. In general the mapping is not an isomorphism and there is no natural -module homomorphism . Thus there is no equally natural construction associating a co-algebra to an algebra over , even when is a field. In that case there does however exist an adjoint functor to the functor which associates to a co-algebra its dual algebra, i.e. for , , where and denote, respectively, the category of -algebras and the category of -co-algebras, [a2]; cf. also Hopf algebra. But if is free of finite rank over then is an isomorphism and the dual co-algebra can be defined.

Let be the set . Let and define

Then is a co-algebra.

If and are two co-algebras, then a morphism of co-algebras is a -module morphism such that and . A co-ideal of a co-algebra is a -submodule such that and .

A co-module over a co-algebra is a -module with a -module morphism such that and the canonical isomorphism . There are obvious notions of homomorphisms of co-modules, etc.

References

[a1] M. Sweedler, "Hopf algebras" , Benjamin (1969)
[a2] E. Abe, "Hopf algebras" , Cambridge Univ. Press (1980)
How to Cite This Entry:
Co-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Co-algebra&oldid=40931
This article was adapted from an original article by V.E. Govorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article