Namespaces
Variants
Actions

Difference between revisions of "Buser isoperimetric inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 14 formulas out of 14 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
For a compact [[Riemannian manifold|Riemannian manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205601.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205602.png" /> be the smallest positive eigenvalue of the Laplace–Beltrami operator (cf. also [[Laplace–Beltrami equation|Laplace–Beltrami equation]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205603.png" /> and define the isoperimetric constant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205604.png" /> by
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205605.png" /></td> </tr></table>
+
Out of 14 formulas, 14 were replaced by TEX code.-->
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205606.png" /> varies over the compact hypersurfaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205607.png" /> which partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205608.png" /> into two disjoint submanifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205609.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056010.png" />.
+
{{TEX|semi-auto}}{{TEX|done}}
 +
For a compact [[Riemannian manifold|Riemannian manifold]] $M = M ^ { n }$, let $\lambda _ { 1 } = \lambda _ { 1 } ( M )$ be the smallest positive eigenvalue of the Laplace–Beltrami operator (cf. also [[Laplace–Beltrami equation|Laplace–Beltrami equation]]) of $M$ and define the isoperimetric constant of $M$ by
  
If the [[Ricci curvature|Ricci curvature]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056011.png" /> is bounded from below,
+
\begin{equation*} h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} }, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056012.png" /></td> </tr></table>
+
where $\Gamma$ varies over the compact hypersurfaces of $M$ which partition $M$ into two disjoint submanifolds $M _ { 1 }$, $M _ { 2 }$.
 +
 
 +
If the [[Ricci curvature|Ricci curvature]] of $M$ is bounded from below,
 +
 
 +
\begin{equation*} \operatorname { Ric } \geq - ( n - 1 ) \delta ^ { 2 } , \quad \delta \geq 0, \end{equation*}
  
 
then the first eigenvalue has the upper bound
 
then the first eigenvalue has the upper bound
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056013.png" /></td> </tr></table>
+
\begin{equation*} \lambda _ { 1 } \leq 2 ( n - 1 ) \delta h + 10 h ^ { 2 }. \end{equation*}
  
 
Note that a lower bound for the first eigenvalue, without any curvature assumptions, is given by the Cheeger inequality
 
Note that a lower bound for the first eigenvalue, without any curvature assumptions, is given by the Cheeger inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056014.png" /></td> </tr></table>
+
\begin{equation*} \frac { 1 } { 4 } h ^ { 2 } \leq \lambda _ { 1 }. \end{equation*}
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P. Buser,  "Über den ersten Eigenwert des Laplace–Operators auf kompakten Flächen"  ''Comment. Math. Helvetici'' , '''54'''  (1979)  pp. 477–493</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Buser,  "A note on the isoperimetric constant"  ''Ann. Sci. Ecole Norm. Sup.'' , '''15'''  (1982)  pp. 213–230</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I. Chavel,  "Riemannian geometry: A modern introduction" , Cambridge Univ. Press  (1995)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  P. Buser,  "Über den ersten Eigenwert des Laplace–Operators auf kompakten Flächen"  ''Comment. Math. Helvetici'' , '''54'''  (1979)  pp. 477–493</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  P. Buser,  "A note on the isoperimetric constant"  ''Ann. Sci. Ecole Norm. Sup.'' , '''15'''  (1982)  pp. 213–230</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  I. Chavel,  "Riemannian geometry: A modern introduction" , Cambridge Univ. Press  (1995)</td></tr></table>

Latest revision as of 16:59, 1 July 2020

For a compact Riemannian manifold $M = M ^ { n }$, let $\lambda _ { 1 } = \lambda _ { 1 } ( M )$ be the smallest positive eigenvalue of the Laplace–Beltrami operator (cf. also Laplace–Beltrami equation) of $M$ and define the isoperimetric constant of $M$ by

\begin{equation*} h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} }, \end{equation*}

where $\Gamma$ varies over the compact hypersurfaces of $M$ which partition $M$ into two disjoint submanifolds $M _ { 1 }$, $M _ { 2 }$.

If the Ricci curvature of $M$ is bounded from below,

\begin{equation*} \operatorname { Ric } \geq - ( n - 1 ) \delta ^ { 2 } , \quad \delta \geq 0, \end{equation*}

then the first eigenvalue has the upper bound

\begin{equation*} \lambda _ { 1 } \leq 2 ( n - 1 ) \delta h + 10 h ^ { 2 }. \end{equation*}

Note that a lower bound for the first eigenvalue, without any curvature assumptions, is given by the Cheeger inequality

\begin{equation*} \frac { 1 } { 4 } h ^ { 2 } \leq \lambda _ { 1 }. \end{equation*}

References

[a1] P. Buser, "Über den ersten Eigenwert des Laplace–Operators auf kompakten Flächen" Comment. Math. Helvetici , 54 (1979) pp. 477–493
[a2] P. Buser, "A note on the isoperimetric constant" Ann. Sci. Ecole Norm. Sup. , 15 (1982) pp. 213–230
[a3] I. Chavel, "Riemannian geometry: A modern introduction" , Cambridge Univ. Press (1995)
How to Cite This Entry:
Buser isoperimetric inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Buser_isoperimetric_inequality&oldid=50321
This article was adapted from an original article by H. Kaul (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article