Namespaces
Variants
Actions

Acceptance-rejection method

From Encyclopedia of Mathematics
Revision as of 16:57, 1 July 2020 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT (latexlist): Replaced 112 formulas out of 112 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Introduced by J. von Neumann [a8], this is the most adaptable method for sampling from complicated distributions (cf. also Sample; Distribution). It works as follows.

Let $f ( x )$ be a given probability density (cf. also Density of a probability distribution), and let $h ( x )$ be a function such that $f ( x ) \leq h ( x )$ within the range of $f ( x )$. If the integral of $h ( x )$ over this range is a finite number $\alpha$, then $g ( x ) = h ( x ) / \alpha$ is a probability density function, and the following procedure is valid:

1) Take a random sample $X$ from the distribution with probability density $g ( x ) = h ( x ) / \alpha$.

2) Generate a uniform random deviate $U$ between zero and one. If $U \leq f ( X ) / h ( X )$, accept $X$ as a sample from the distribution $f ( x )$. Otherwise reject $X$ and go back to Step 1.

The ease of the method depends on the following properties of the hat function $h ( x )$:

A) One has to select a hat function $h ( x )$ from which it is easy to sample. Examples are given below.

B) The parameters of the hat function have to be determined in such a way that the area $\alpha$ below $h ( x )$ becomes minimal.

Optimal hat functions can be calculated by analytical methods. Assume that the hat function touches $f ( x )$ at two points $L$ (left) and $R$ (right), where $L < R$. Furthermore, suppose that the hat function depends on two parameters, called $m$ and $s$. Thus

\begin{equation} \tag{a1} f ( L ) = \alpha g ( L ; m , s ) , f ( R ) = \alpha g ( R ; m , s ), \end{equation}

and $f ( x ) \leq \alpha g ( x ; m , s )$ for all other $x$. Since $L$ and $R$ are local maxima of $f ( x ) / \operatorname { g } ( x ; m , s )$, one has the necessary conditions

\begin{equation} \tag{a2} \frac { f ^ { \prime } ( L ) } { f ( L ) } = \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } \end{equation}

and

\begin{equation} \tag{a3} \frac { f ^ { \prime } ( R ) } { f ( R ) } = \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }. \end{equation}

If $L$ and $R$ are uniquely determined, they should satisfy the sufficient conditions

\begin{equation*} \frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }. \end{equation*}

Otherwise, the first derivative of $\operatorname { ln } ( f ( x ) / g ( x ; m , s ) )$ has to be discussed in detail.

Equations (a1), (a2) and (a3) are four equations for the determination of $L$, $R$, $m$, and $s$. Assuming that $L$, $R$ and $m$ can be expressed as functions of $s$, one has to minimize

\begin{equation} \tag{a4} \alpha ( s ) = \frac { f ( L ( s ) ) } { g ( L ( s ) ; m ( s ) , s ) } = \frac { f ( R ( s ) ) } { g ( R ( s ) ; m ( s ) , s ) }. \end{equation}

This leads to the necessary conditions

\begin{equation*} - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d L } \operatorname { ln } \frac { f ( L ) } { g ( L ; m , s ) } \frac { d L } { d s } + \end{equation*}

\begin{equation*} + \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }+ \end{equation*}

\begin{equation*} + \frac { d } { d m } \operatorname { ln } g ( R ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( R ; m , s ) = 0. \end{equation*}

The first expression in each line is zero, by (a2) and (a3). Solving both equations for $dm / \ ds$, and comparing, yields the fundamental relation

\begin{equation} \tag{a5} \frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }= \end{equation}

\begin{equation*} = \frac { d \operatorname { ln } g ( R ; m , s ) } { d m } \frac { d \operatorname { ln } g ( L ; m , s ) } { d s }. \end{equation*}

(a1), (a2), (a3) and (a5) contain five conditions for finding candidates $L$, $R$, $m$, $s$ and $\alpha$.

Examples.

Triangular hat functions.

\begin{equation*} g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m, } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s. } \end{array} \right. \end{equation*}

Samples may be obtained as $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$. The fundamental identity (a5) leads to $s = R - L$. With its help all constants $L$, $R$, $m$, $s$, and $\alpha$ can be determined.

Double exponential hat functions.

The double exponential (or Laplace) distribution is given by

\begin{equation*} g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m, } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m. } \end{array} \right. \end{equation*}

(See also Laplace distribution.)

Samples are obtained as $X \leftarrow m + T s E$, where $E$ is a standard exponential deviate and $T$ a random sign $\pm$. The fundamental identity (a5) leads to $2 s = R - L$.

Student-$t$ hat functions.

Its probability density function is given as

\begin{equation*} t _ { n } ( x ) = \frac { c _ { n } } { s } \left( 1 + \frac { ( x - m ) ^ { 2 } } { s ^ { 2 } n } \right) ^ { - ( n + 1 ) / 2 } \end{equation*}

for $- \infty < x < \infty$, $n \geq 1$, where

\begin{equation*} c _ { n } = \frac { 1 } { \sqrt { n } B \left( \frac { n } { 2 } , \frac { 1 } { 2 } \right) } = \frac { \Gamma \left( \frac { n + 1 } { 2 } \right) } { \sqrt { n \pi } \Gamma \left( \frac { n } { 2 } \right) }. \end{equation*}

(See also Student distribution.)

The $t$-family contains the Cauchy distribution for $n = 1$ and the normal distribution for $n \rightarrow \infty$ as extreme cases. For $n = 2$ and $n = 3$ special sampling methods are available: If $U$ denotes a $( 0,1 )$-uniform random variable, then $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ samples from $t_2$ and values from the $t_3$-distribution can be generated efficiently by the ratio-of-uniforms method of A.J. Kinderman and J.F. Monahan [a5], which will be discussed subsequently. The fundamental identity (a5) yields $s ^ { 2 } = ( R - m ) ( m - L )$. As before, $L$, $R$, $s$, $m$, and $\alpha$ can be determined explicitly.

The ratio-of-uniforms method was introduced by Kinderman and Monahan for sampling from a density $f ( x )$. First the table mountain-function is constructed: Let $a$, $b$ and $c$ be real numbers and let $k$ be equal to $1$, but $k = 2$ might be another possible choice for some densities. Then

\begin{equation*} y = \left\{ \begin{array} { l l } { \left( \frac { c } { a - x } \right) ^ { k + 1 } } & { \text { for } x \in ( - \infty , a - c ], } \\ { 1 } & { \text { for } x \in [ a - c , a - c + b ], } \\ { \left( \frac { b - c } { x - a } \right) ^ { k + 1 } } & { \text { for } x \in [ a - c + b , \infty ]. } \end{array} \right. \end{equation*}

Samples from the area below the table mountain-function are obtained by the transformation

\begin{equation*} X = \alpha + \frac { b V - c } { U ^ { 1 / k } } , Y = U ^ { 1 / k }. \end{equation*}

The table mountain-function is taken as a hat function for $f ( x ) / f$, where $f = \operatorname { max } f ( x )$. In this case the fundamental identity leads to $f ( L ) = f ( R )$ for calculating optimal constants.

Squeeze functions.

Step 2 of the acceptance-rejection method can be improved if some lower bound

\begin{equation*} b ( x ) \leq q ( x ) = \frac { f ( x ) } { h ( x ) } , \text { for all } - \infty < x < \infty, \end{equation*}

is known and easy to calculate. Step 2 then changes to:

2') Generate a uniform random deviate $U$ between zero and one. If $U \leq b ( X )$, accept $X$ as a sample from the target distribution $f ( x )$. If $U \geq f ( X ) / h ( X )$, reject $X$ and go back to $1$. Otherwise accept $X$.

Squeeze functions have been constructed in many procedures. See [a4] for some theory.

References

[a1] J.H. Ahrens, U. Dieter, "Computer methods for sampling from gamma, beta, Poisson and binomial distributions" Computing , 12 (1974) pp. 223–246
[a2] L. Devroye, "Non-uniform random variate generation" , Springer (1986)
[a3] U. Dieter, "Optimal acceptance-rejection methods for sampling from various distributions" P.R. Nelson (ed.) , The Frontiers of Statistical Computation, Simulation, & Modeling , Amer. Ser. Math. Management Sci. (1987)
[a4] U. Dieter, "Mathematical aspects of various methods for sampling from classical distributions" , Proc. 1989 Winter Simulation Conference (1989) pp. 477–483
[a5] A.J. Kinderman, J.F. Monahan, "Computer generation of random variables using the ratio of uniform deviates" ACM Trans. Math. Software , 3 (1977) pp. 257–260
[a6] D.E. Knuth, "The art of computer programming" , 2: Seminumerical algorithms , Addison-Wesley (1998) (Edition: Third)
[a7] J. Leydold, "Automatic sampling with the ratio-of-uniform method" ACM Trans. Math. Software , 26 (2000) pp. 78–88
[a8] J. von Neumann, "Various techniques used in connection with random digits. Monte Carlo methods" Nat. Bureau Standards , 12 (1951) pp. 36–38
[a9] E. Stadlober, "Sampling from Poisson, binomial and hypergeometric distributions: Ratio of uniforms as a simple and fast alternative" Math.–Statist. Sekt. 303 Forschungsgesellschaft Joanneum, Graz, Austria (1989)
[a10] E. Stadlober, "The ratio of uniforms approach for generating discrete random varates" J. Comput. Appl. Math. , 31 : 1 (1990) pp. 181–189
How to Cite This Entry:
Acceptance-rejection method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Acceptance-rejection_method&oldid=50204
This article was adapted from an original article by U. Dieter (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article