Namespaces
Variants
Actions

Wilf quadrature formulas

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 65D32 [MSN][ZBL]

Wilf formulas

Quadrature formulas (cf. Quadrature formula) constructed from a Hilbert space setting.

Let $\mathcal{H}$ be a Hilbert space of continuous functions such that $I [ f ] = \int _ { a } ^ { b } f ( x ) d x$ and $L _ { \nu } [ f ] = f ( x _ { \nu } )$ are continuous functionals; let $R = I - \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } L _ { \nu }$ for $( \alpha _ { 1 } , \dots , \alpha _ { n } ) \in \mathbf{C} ^ { n }$. Riesz's representation theorem guarantees the existence of an $r \in \mathcal{H}$ such that $R [ f ] = ( r , f )$. By the Schwarz inequality (cf. Bunyakovskii inequality) one has $|R[f]| \le \Vert R \Vert\cdot\Vert f \Vert$ in the Hilbert space norm. The formula is called optimal in $\mathcal{H}$ if $x _ { 1 } , \ldots , x _ { n }$ and $\alpha_{1} , \ldots , \alpha _ { n }$ are chosen such as to minimize $\| r\|$. If $\mathcal{H}$ has a continuously differentiable reproducing kernel $K$, then such optimal formulas necessarily satisfy [a1]

\begin{equation*} R [ K ( x _ { \nu } , . ) ] = 0 , \quad \nu = 1 , \dots , n, \end{equation*}

and

\begin{equation*} R [ K _ { x } ( x _ { \nu } , . ) ] = 0 , \quad \nu = 2 , \dots , n - 1, \end{equation*}

and $\nu = 1$ ($\nu = n$) if $x _ { 1 } \neq a$ ($x _ { n } \neq b$). Here, $K _ { x }$ denotes the derivative with respect to the first variable. Formulas which satisfy these conditions are called Wilf formulas.

The problem of minimizing $\| r\|$ can also be considered for fixed nodes $x _ { 1 } , \ldots , x _ { n }$. These formulas are characterized by integrating the unique element of least norm in $\mathcal{H}$ which interpolates $f$ at the nodes $x _ { \nu }$. An analogous statement holds for Hermite quadrature formulas of the type $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \nu = 1 } ^ { n } \beta _ { \nu } f ^ { \prime } ( x _ { \nu } )$. The Wilf formula for free nodes is the Wilf formula for those fixed nodes for which $b _ { \nu } = 0$ [a1], [a3].

The original construction of H.S. Wilf [a4] was for the Hardy space (cf. also Hardy spaces) of functions which are analytic inside the open disc with radius $\rho$, with inner product

\begin{equation*} ( f , g ) = \operatorname { lim } _ { \eta \rightarrow \rho - 0 } \int _ { | z | = \eta } f ( z ) \overline { g ( z ) } d s. \end{equation*}

In the Hardy space the necessary conditions have a unique solution. The nodes are in $[ - 1,1 ]$, the weights are positive and $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } \leq 2$. For fixed $n$ and $\rho \rightarrow \infty$ these formulas converge to the Gaussian formulas (cf. also Gauss quadrature formula) [a1]. They can be constructed from a suitable rational interpolant [a1], [a3].

For fixed nodes $x _ { 1 } , \ldots , x _ { n }$, the inner product

\begin{equation*} ( f , g ) = \sum _ { \nu = 1 } ^ { r } f ( x _ { \nu } ) g ( x _ { \nu } ) + \int _ { a } ^ { b } f ^ { ( r ) } ( x ) g ^ { ( r ) } ( x ) d x \end{equation*}

leads to the Sard quadrature formula, which is optimal in the class of functions $f$ with $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ [a1], [a2], [a3] (see Optimal quadrature; Best quadrature formula). The Sard formula results from integrating the natural spline function of order $2 r - 1$ which interpolates $f$ at the nodes $x _ { 1 } , \ldots , x _ { n }$ [a1].

References

[a1] H. Braß, "Quadraturverfahren" , Vandenhoeck&Ruprecht (1977)
[a2] P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984) (Edition: Second)
[a3] H. Engels, "Numerical quadrature and cubature" , Acad. Press (1980)
[a4] H.S. Wilf, "Exactness conditions in numerical quadrature" Numer. Math. , 6 (1964) pp. 315–319
How to Cite This Entry:
Wilf quadrature formulas. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wilf_quadrature_formulas&oldid=51502
This article was adapted from an original article by Sven Ehrich (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article