Namespaces
Variants
Actions

Propositional formula

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 03-XX [MSN][ZBL]

A propositional formula is an expression constructed from propositional variables (cf. Propositional variable) by means of the propositional connectives (cf. Propositional connective) $\&,\lor,\supset,\neg,\equiv$ (and possibly others) in accordance with the following rules: 1) each propositional variable is a propositional formula; and 2) if $A,B$ are propositional formulas, then so are $(A\mathbin\&B)$, $(A\lor B)$, $(A\supset B)$, and $(\neg A)$.

If $\sigma$ is a set of propositional connectives (a fragment), then a propositional formula in the fragment $\sigma$ is a propositional formula in whose construction rule 2) only connectives from $\sigma$ are used.

References

[Wó] R. Wójcicki, "Theory of logical calculi", Kluwer (1988) pp. 13; 61 MR1009788 Zbl 0682.03001
[Zi] Z. Ziembinski, "Practical logic", Reidel (1976) pp. Chapt. V, §5 Zbl 0372.02001
How to Cite This Entry:
Propositional formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Propositional_formula&oldid=43578
This article was adapted from an original article by S.K. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article