Namespaces
Variants
Actions

Leslie matrix

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 92D25 Secondary: 15A18 [MSN][ZBL]

Matrices arising in a discrete-time deterministic model of population growth [a3]. The Leslie model considers individuals of one sex in a population which is closed to migration. The maximum life span is $k$ time units, and an individual is said to be in the $i$th age group if its exact age falls in the interval $[ i - 1 , i )$, for some $1 \leq i \leq k$. The corresponding Leslie matrix is given by

\begin{equation*} L = \left( \begin{array} { c c c c c } { m _ { 1 } } & { m _ { 2 } } & { \ldots } & { \ldots } & { m _ { k } } \\ { p _ { 1 } } & { 0 } & { \ldots } & { \ldots } & { 0 } \\ { 0 } & { p _ { 2 } } & { 0 } & { \ldots } & { 0 } \\ { \vdots } & { } & { \ddots } & { } & { \vdots } \\ { 0 } & { \ldots } & { 0 } & { p _ { k - 1 } } & { 0 } \end{array} \right), \end{equation*}

where for each $1 \leq i \leq k - 1$, $p _ { i }$ is the proportion of individuals in the $i$th age group who survive one time unit (this is assumed to be positive), and for each $1 \leq i \leq k$, $m_i$ is the average number of individuals produced in one time unit by a member of the $i$th age group. Let $v _ { i , t }$ be the average number of individuals in the $i$th age group at time $t$ units, and let $v _ { t }$ be the vector

\begin{equation*} \left( \begin{array} { c } { v _ { 1 , t }} \\ { \vdots } \\ { v _ { k , t } } \end{array} \right). \end{equation*}

Then $v _ { t + 1} = L v_ t $, and since the conditions of mortality and fertility are assumed to persist, $v _ { t } = L ^ { t } v _ { 0 }$ for each integer $t \geq 0$.

If some $m_i$ is positive, then $L$ has one positive eigen value $r$ which is a simple root of the characteristic polynomial. For any eigenvalue $\lambda$ of $L$, $r \geq | \lambda |$; indeed $L$ has exactly $d$ eigenvalues of modulus $r$, where $d$ is the greatest common divisor of $\{ i : m_i > 0 \}$. Corresponding to the eigenvalue $r$ is the right eigenvector $w$ given by the formula

\begin{equation*} w = \frac { 1 } { s } \left( \begin{array} { c } { 1 } \\ { p _ { 1 } / r } \\ { p _ { 1 } p _ { 2 } / r ^ { 2 } } \\ { \vdots } \\ { p _ { 1 } \dots p _ { k - 1} / r ^ { k - 1 } } \end{array} \right), \end{equation*}

where $s = 1 + p _ { 1 } / r + \ldots + p _ { 1 } \ldots p _ { k - 1 } / r ^ { k - 1 }$. A left eigenvector corresponding to $r$ has the form $[ y _ { 1 } \ldots y _ { k } ]$, where for $1 \leq j \leq k$,

\begin{equation*} y _ { j } = \sum _ { i = j } ^ { k } p _ { j } \ldots p _ { i - 1 } m _ { i } r ^ { j - i - 1 }. \end{equation*}

The quantity $y_j$ is interpreted as the reproductive value of an individual in the $j$th age group.

Suppose that there are indices $i$, $j$ such that $1 \leq i \leq j \leq k$, and both $m_j$ and $v _ { i ,0} $ are positive. If $d > 1$, the sequence of age-distribution vectors, $v _ { t } / \sum _ { i = 1 } ^ { k } v _ { i , t }$, is asymptotically periodic as $t \rightarrow \infty$, and the period is a divisor of $d$ depending on $v_0$. When $d = 1$, then as $t \rightarrow \infty$, the sequence of age-distribution vectors converges to the eigenvector $w$, which is called the asymptotic stable age distribution for the population. The nature of the convergence of the age distributions is governed by the quantities $\lambda / r$, where $\lambda$ is an eigenvalue of $L$ distinct from $r$; a containment region in the complex plane for these quantities has been characterized (cf. [a2], [a5]). The sequence of vectors $v _ { t }$ is asymptotic to $c r ^ { t } w$, where $c$ is a positive constant depending on $v_0$; hence $r$ is sometimes called the rate of increase for the population. The sensitivity of $r$ to changes in $L$ is discussed in [a1] and [a6].

Variations on the Leslie model include matrix models for populations classified by criteria other than age (see [a1]), and a model involving a sequence of Leslie matrices changing over time (see [a4] and [a6]). A stochastic version of the Leslie model yields a convergence result for the sequence $v _ { t } / r ^ { t }$ under the hypotheses that $d = 1$ and $r > 1$ (see [a6]).

References

[a1] H. Caswell, "Matrix population models" , Sinauer (1989)
[a2] K.P. Hadeler, G. Meinardus, "On the roots of Cauchy polynomials" Linear Alg. & Its Appl. , 38 (1981) pp. 81–102
[a3] P.H. Leslie, "On the use of matrices in certain population mathematics" Biometrika , 33 (1945) pp. 213–245
[a4] N. Keyfitz, "Introduction to the mathematics of population" , Addison-Wesley (1977)
[a5] S. Kirkland, "An eigenvalue region for Leslie matrices" SIAM J. Matrix Anal. Appl. , 13 (1992) pp. 507–529
[a6] J.H. Pollard, "Mathematical models for the growth of human populations" , Cambridge Univ. Press (1973)
How to Cite This Entry:
Leslie matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leslie_matrix&oldid=55382
This article was adapted from an original article by S. Kirkland (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article