Namespaces
Variants
Actions

Complete group

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 20E Secondary: 22A [MSN][ZBL]

A group $G$ whose centre is trivial (that is, $G$ is a so-called group without centre) and for which all automorphisms are inner (see Inner automorphism). The automorphism group of a complete group $G$ is isomorphic to $G$ itself (the term "complete" is related to this property). Examples of complete groups are the symmetric groups $S_n$ when $N \ne 2,6$. If a group $G$ contains a normal subgroup $B$ which is complete, then $G$ decomposes into a direct product $B \times K$ of the subgroup $B$ and its centralizer $K$ in $G$; indeed $K$ is isomorphic to the quotient group $G/B$.

Comment

In topological group theory, a complete group may refer to a group that is a complete uniform space with respect to the uniformity implied by the topological group structure.

References

[1] M.I. Kargapolov, Yu.I. Merzlyakov, "Fundamentals of group theory" , Moscow (1982) (In Russian)
[2] M. Hall jr., "Group theory" , Chelsea (1976)
[a1] William Burnside, "Theory of Groups of Finite Order", 1911 ed. repr. Cambridge University Press (2012) ISBN 1108050328
[a2] Ross Geoghegan, Topological Methods in Group Theory, Graduate Texts in Mathematics 243, Springer (2008) ISBN 0-387-74611-0
How to Cite This Entry:
Complete group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Complete_group&oldid=54546
This article was adapted from an original article by N.N. Vil'yams (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article