Namespaces
Variants
Actions

Bianchi transformation

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The transition from one focal surface $S$ of a Bianchi congruence to the other focal surface $S'$ of the same congruence (cf. Bianchi congruence). If $S$ is a pseudo-sphere then $S'$ also is a pseudo-sphere. The pseudo-spheres $S'$ which are Bianchi transforms of $S$ are orthogonal trajectories of the following congruence of circles. They are situated in the tangent plane to $S$ and have the same radius as $S$.


Comments

Cf. also [a2], articles 803, 804 in volume III.

References

[a1] L.P. Eisenhart, "A treatise on the differential geometry of curves and surfaces" , Boston (1909)
[a2] G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1–4 , Chelsea, reprint (1972)
How to Cite This Entry:
Bianchi transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bianchi_transformation&oldid=32669
This article was adapted from an original article by V.T. Bazylev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article