Smarandache function
From Encyclopedia of Mathematics
Revision as of 16:55, 1 July 2020 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT (latexlist): Replaced 10 formulas out of 10 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Given a natural number $n$, the value of the Smarandache function $ \eta $ at $n$ is the smallest natural number $m$ such that $n$ divides $m!$. An elementary observation is that $\eta ( n ) \leq n$, and that $\eta ( n ) = n$ if and only if $n$ is a prime number or equal to $4$.
References
| [a1] | F. Smarandache, "A function in number theory" Smarandache Function J. , 1 (1990) pp. 3–65 |
How to Cite This Entry:
Smarandache function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Smarandache_function&oldid=50070
Smarandache function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Smarandache_function&oldid=50070
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article