Neumann eigenvalue
Consider a bounded domain with a piecewise smooth boundary \partial \Omega. A number \mu is a Neumann eigenvalue of \Omega if there exists a function u \in C ^ { 2 } ( \Omega ) \cap C ^ { 0 } ( \overline { \Omega } ) (a Neumann eigenfunction) satisfying the following Neumann boundary value problem (cf. also Neumann boundary conditions):
\begin{equation} \tag{a1} - \Delta u = \mu u \text { in } \Omega, \end{equation}
\begin{equation} \tag{a2} \frac { \partial u } { \partial n } = 0 \text { in } \partial \Omega, \end{equation}
where \Delta is the Laplace operator (i.e., \Delta = \sum _ { i = 1 } ^ { n } \partial ^ { 2 } / \partial x _ { i } ^ { 2 }). For more general definitions, see [a8]. Neumann eigenvalues (with n = 2) appear naturally when considering the vibrations of a free membrane (cf. also Natural frequencies). In fact, for n = 2 the non-zero Neumann eigenvalues are proportional to the square of the eigenfrequencies of the membrane with free boundary. Provided \Omega is bounded and the boundary \partial \Omega is sufficiently regular, the Neumann Laplacian has a discrete spectrum of infinitely many non-negative eigenvalues with no finite accumulation point:
\begin{equation} \tag{a3} 0 = \mu _ { 1 } ( \Omega ) \leq \mu _ { 2 } ( \Omega ) \leq \dots \end{equation}
(\mu _ { k } \rightarrow \infty as k \rightarrow \infty). The Neumann eigenvalues are characterized by the max-min principle [a3]:
\begin{equation} \tag{a4} \mu _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }, \end{equation}
where the is taken over all u \in H ^ { 1 } ( \Omega ) orthogonal to \varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H ^ { 1 } ( \Omega ), and the \operatorname {sup} is taken over all the choices of \{ \varphi _ { i } \} _ { i = 1 } ^ { k - 1 }. For simply-connected domains the first eigenfunction u_1, corresponding to the eigenvalue \mu _ { 1 } = 0 is constant throughout the domain. All the other eigenvalues are positive. While Dirichlet eigenvalues satisfy stringent constraints (e.g., \lambda _ { 2 } / \lambda _ { 1 } cannot exceed 2.539\dots for any bounded domain in \mathbf{R} ^ { 2 }, [a1]; see also Dirichlet eigenvalue), no such constraints exist for Neumann eigenvalues, other than the fact that they are non-negative. In fact, given any finite sequence \mu _ { 1 } = 0 < \ldots < \mu _ { N }, there is an open, bounded, smooth, simply-connected domain of \mathbf{R} ^ { 2 } having this sequence as the first N Neumann eigenvalues of the Laplacian on that domain [a2]. Though it is obvious from the variational characterization of both Dirichlet and Neumann eigenvalues (see (a4)) that \mu _ { k } \leq \lambda _ { k }, L. Friedlander [a4] proved the stronger result
\begin{equation} \tag{a5} \mu _ { k + 1 } \leq \lambda _ { k } ,\, k = 1, 2,\dots . \end{equation}
How far the first non-trivial Neumann eigenvalue is from zero for a convex domain in \mathbf{R} ^ { 2 } is given through the optimal inequality [a7]
\begin{equation} \tag{a6} \mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } }, \end{equation}
where d is the diameter of the domain. There are many more isoperimetric inequalities for Neumann eigenvalues (see Rayleigh–Faber–Krahn inequality).
For large values of k, H. Weyl proved [a9]
\begin{equation} \tag{a7} \mu _ { k + 1 } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }, \end{equation}
where | \Omega | and C _ { n } = \pi ^ { n / 2 } / \Gamma ( n / 2 + 1 ) are, respectively, the volumes of \Omega and of the unit ball in {\bf R} ^ { n }.
For any plane-covering domain (i.e., a domain that can be used to tile the plane without gaps, nor overlaps, allowing rotations, translations and reflections of itself), G. Pólya [a6] proved that
\begin{equation} \tag{a8} \mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots , \end{equation}
and conjectured the same bound for any bounded domain in \mathbf{R} ^ { 2 }. This is equivalent to saying that the Weyl asymptotics of \mu _ { k } is an upper bound for \mu _ { k }. The analogous conjecture in dimension n is
\begin{equation} \tag{a9} \mu _ { k + 1 } \leq \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } ,\, k = 0,1\dots. \end{equation}
The most significant result towards the proof of Pólya's conjecture for Neumann eigenvalues is the result by P. Kröger [a5]:
\begin{equation*} \sum _ { i = 1 } ^ { k } \mu _ { i } \leq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } , k = 1,2, \dots . \end{equation*}
A proof of Pólya's conjecture for both Dirichlet and Neumann eigenvalues would imply Friedlander's result (a5).
References
[a1] | M.S. Ashbaugh, R.D. Benguria, "A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions" Ann. of Math. , 135 (1992) pp. 601–628 |
[a2] | Y. Colin de Vérdiere, "Construction de laplaciens dont une partie finie du spectre est donnée" Ann. Sci. École Norm. Sup. , 20 : 4 (1987) pp. 599–615 |
[a3] | R. Courant, D. Hilbert, "Methoden der mathematischen Physik" , I , Springer (1931) (English transl.: Methods of Mathematical Physics, vol. I., Interscience, 1953) |
[a4] | L. Friedlander, "Some inequalities between Dirichlet and Neumann eigenvalues" Arch. Rational Mech. Anal. , 116 (1991) pp. 153–160 |
[a5] | P. Kröger, "Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean Space" J. Funct. Anal. , 106 (1992) pp. 353–357 |
[a6] | G. Polya, "On the eigenvalues of vibrating membranes" Proc. London Math. Soc. , 11 : 3 (1961) pp. 419–433 |
[a7] | L.E. Payne, H.F. Weinberger, "An optimal Poincaré inequality for convex domains" Arch. Rational Mech. Anal. , 5 (1960) pp. 286–292 |
[a8] | M. Reed, B. Simon, "Methods of modern mathematical physics IV: Analysis of operators" , Acad. Press (1978) |
[a9] | H. Weyl, "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen" Math. Ann. , 71 (1911) pp. 441–479 |
Neumann eigenvalue. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Neumann_eigenvalue&oldid=49869