Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/57

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. d12024021.png ; $\operatorname{Prim}( U ( \mathfrak{g} ) )$ ; confidence 0.525

2. e12023047.png ; $z ( a ) = 0 = z ( b )$ ; confidence 0.524

3. q12003045.png ; $\psi = ( \text { id } \otimes \varphi ) \circ L : A \rightarrow \operatorname { Fun } _ { q } ( G )$ ; confidence 0.524

4. w12021055.png ; $B _ { m } = I _ { m }$ ; confidence 0.524

5. c12003029.png ; $h _ { K }$ ; confidence 0.524

6. i13001042.png ; $\overline { d } _{(n)} ( A ) = \operatorname { per } ( A ) \geq \overline { d } _ { \lambda } ( A ).$ ; confidence 0.524

7. d13013071.png ; $\psi _ { + }$ ; confidence 0.524

8. l12015025.png ; $w \in T V$ ; confidence 0.524

9. c12031018.png ; $n ( \epsilon , F _ { d } ) = \operatorname { min } \{ n : e _ { n} ( F _ { d } ) \leq \epsilon \}.$ ; confidence 0.524

10. a11030024.png ; $\theta _ { X }$ ; confidence 0.524

11. w120090373.png ; $M = \mathcal{U} _ { \mathbf{Z} } v ^ { + }$ ; confidence 0.524

12. z1300409.png ; $\lceil n / 2 \rceil $ ; confidence 0.523

13. a120070121.png ; $\frac { d u } { d t } = A ( t , v ) u + f ( t , v ) , 0 < t \leq T , u ( 0 ) = u_0.$ ; confidence 0.523

14. e1300209.png ; $( \varphi _ { j } ) _ { j \in \mathbf{N} }$ ; confidence 0.523

15. t12006073.png ; $Z = Z_j$ ; confidence 0.523

16. a120260102.png ; $X = ( X _ { 1 } , \ldots , X _ { n } )$ ; confidence 0.523

17. f12023077.png ; $\mathcal{L} _ { X } = [ i_{X} , d ] = i_{X} d + d i _{X}$ ; confidence 0.523

18. f13019010.png ; $j = 0 , \ldots , 2 N - 1$ ; confidence 0.523

19. a1102803.png ; $uv$ ; confidence 0.523

20. c12008031.png ; $= \Lambda ^ { m } + D _ { 1 } \Lambda ^ { m - 1 } + \ldots + D _ { m - 1 } \Lambda + D _ { m } , D _ { k } \in C ^ { n \times n } , k = 1 , \ldots , m,$ ; confidence 0.523

21. b11004038.png ; $N _ { 2 } / N _ { 1 }$ ; confidence 0.523

22. f120110153.png ; $\operatorname{supp} f \subset K$ ; confidence 0.523

23. d12023074.png ; $R ^ { - 1 } - Z ^ { * } R ^ { - 1 } Z = \widetilde{ H } \square ^ { * } J \widetilde { H }$ ; confidence 0.523

24. m130260228.png ; $Q ( A )$ ; confidence 0.523

25. m12003092.png ; $\sum _ { i = 1 } ^ { n } \eta ( \overset{\rightharpoonup} { x } _ { i } , r _ { i } ) \overset{\rightharpoonup}{ x } _ { i } = \overset{\rightharpoonup}{ 0 },$ ; confidence 0.523

26. z13001039.png ; $\tilde{x} ( z ) z ^ { n - 1 } = h ( z ) / g ( z )$ ; confidence 0.523

27. b130300141.png ; $D ( 2 n_1 ) \times D ( 2 n_2 ) ^ { \text{l} }$ ; confidence 0.523

28. l12012092.png ; $\operatorname{p} \in P$ ; confidence 0.523

29. a12023044.png ; $\overline{ D }$ ; confidence 0.522

30. a1300406.png ; $\lambda ^ { \operatorname{Fm} } : \operatorname{Fm} ^ { n } \rightarrow \operatorname{Fm}$ ; confidence 0.522

31. w120090268.png ; $h _ { \beta }$ ; confidence 0.522

32. l12007016.png ; $\left( \begin{array} { c } { v _ { 1 , t }} \\ { \vdots } \\ { v _ { k , t } } \end{array} \right).$ ; confidence 0.522

33. l110020158.png ; $a , b \in G$ ; confidence 0.522

34. f13029049.png ; $\forall \{ u_j : j \in J \} \subset L ^ { X }$ ; confidence 0.522

35. s13048036.png ; $H _ { S } ^ { 0 } ( D ) =\operatorname{ ker} D$ ; confidence 0.522

36. d120020127.png ; $g ( \overline { u } _ { 1 } ) = c ^ { T } x ^ { ( l ) } + ( A _ { 1 } x ^ { ( l ) } - b _ { 1 } ) ^ { T } \overline { u _1}$ ; confidence 0.522

37. b13017011.png ; $T > t$ ; confidence 0.522

38. a13014023.png ; $n = 1 , \infty$ ; confidence 0.522

39. r13016036.png ; $\mathcal{R} ^ { \infty } \rightarrow \ldots \rightarrow \mathcal{R} ^ { m } \rightarrow \ldots \rightarrow \mathcal{R} ^ { 0 }$ ; confidence 0.522

40. b12010034.png ; $F _ { s } ( t , x _ { 1 } , \ldots , x _ { s } ) =$ ; confidence 0.522

41. w12011045.png ; $= \int _ { \mathbf{R} ^ { 2 n } } \hat { a } ( \Xi ) \operatorname { exp } ( 2 i \pi \Xi . M ) d \Xi , $ ; confidence 0.522

42. a01209011.png ; $a , b \in R$ ; confidence 0.522

43. b0153407.png ; $G ^ { \prime }$ ; confidence 0.522

44. q13005065.png ; $\operatorname{QS} ( \mathbf{T} )$ ; confidence 0.522

45. a12023052.png ; $\partial \Omega _ { r }$ ; confidence 0.521

46. b017030110.png ; $\Omega ^ { * }$ ; confidence 0.521

47. p1102503.png ; $x ^ { 0 } \in \mathbf{R} ^ { n}$ ; confidence 0.521

48. c12031036.png ; $\alpha _ { l } \leq k $ ; confidence 0.521

49. j12002083.png ; $\mathsf{E} | Y _ { \infty } - Y _ { T } | \leq c \mathsf{P} [ T < \infty ]$ ; confidence 0.521

50. a012410136.png ; $U _ { 1 }$ ; confidence 0.521

51. z13010030.png ; $\forall x \forall y ( \forall z ( z \in x \leftrightarrow z \in y ) \rightarrow x = y ).$ ; confidence 0.521

52. i120080106.png ; $T _ { c } = 2 J / k _ { B }$ ; confidence 0.521

53. a13029017.png ; $L_0$ ; confidence 0.521

54. w1201909.png ; $f _ { \text{w} }$ ; confidence 0.521

55. b13026067.png ; $f : \overline { \Omega } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.521

56. s12028027.png ; $\{ \ldots \}$ ; confidence 0.521

57. b12044069.png ; $\{ g_j\}$ ; confidence 0.521

58. m13001035.png ; $\mathsf{P} ( X _ { i } | \gamma _ { i } )$ ; confidence 0.521

59. q13002031.png ; $\mathcal{P} ^ { \# _\mathcal{ P}}$ ; confidence 0.521

60. b12021036.png ; $X _ { i } \in \mathfrak{a}$ ; confidence 0.521

61. l05700071.png ; $W \equiv \lambda x . F ( x x )$ ; confidence 0.521

62. t12020080.png ; $R _ { n } < 1 - \operatorname { log } n / ( 3 n )$ ; confidence 0.520

63. s12016020.png ; $\| I _ { 1 } ( f ) - U ^ { i } ( f ) \| _ { 0 }$ ; confidence 0.520

64. a1301809.png ; $\models _ { \mathcal{L} } \subseteq \operatorname{Mod} \times \operatorname{Fm}$ ; confidence 0.520

65. f12019038.png ; $Nh$ ; confidence 0.520

66. b11066032.png ; $H f ( x ) = \operatorname { lim } _ { \epsilon \downarrow 0} \int _ { | t | > \epsilon } f ( x - t ) / t d t$ ; confidence 0.520

67. f1202409.png ; $t \mapsto t + T$ ; confidence 0.520

68. m13022071.png ; $T_g$ ; confidence 0.520

69. a01055036.png ; $\mathbf{Z} _ { p }$ ; confidence 0.520

70. i13009045.png ; $\varepsilon \mapsto ( \varepsilon , \ldots , \varepsilon )$ ; confidence 0.520

71. b12016055.png ; $x _ { k} ^ { \prime }$ ; confidence 0.520

72. b12032063.png ; $t \leq t_1$ ; confidence 0.520

73. a13030097.png ; $\mathcal{C} ( K )$ ; confidence 0.520

74. h13012016.png ; $\| f ( x ) - a ( x ) \| \leq \varepsilon$ ; confidence 0.520

75. l12013049.png ; $V ( \widetilde{Z} _ { p } ) \neq \emptyset$ ; confidence 0.520

76. d11008040.png ; $v ^ { H }$ ; confidence 0.520

77. a01198064.png ; $i , j$ ; confidence 0.520

78. s120150132.png ; $\pi : X \rightarrow X // G$ ; confidence 0.520

79. k13006027.png ; $a _ { k } = n$ ; confidence 0.520

80. b130200118.png ; $\alpha _ { j } ( D _ { i } ) = \delta _ { i j }$ ; confidence 0.519

81. a130240418.png ; $n ^ { - 1 } \mathbf{M} _ { \mathsf{E} }$ ; confidence 0.519

82. a13027031.png ; $P_n$ ; confidence 0.519

83. c1202302.png ; $A _ { 0 } \subset \mathbf{R} ^ { n }$ ; confidence 0.519

84. j12002050.png ; $\mathsf{E} B _ { s } B _ { t } = \operatorname { min } ( s , t )$ ; confidence 0.519

85. a13027083.png ; $Q _ { n } ^ { * } w \rightarrow w$ ; confidence 0.519

86. b13020059.png ; $h _ { i j } = 0$ ; confidence 0.519

87. a12005042.png ; $\lambda \in S _ { \theta _ { 0 } }$ ; confidence 0.519

88. b12027079.png ; $\sum m \underline { \square } _ { n } ( h ) h$ ; confidence 0.519

89. s12020037.png ; $\neq \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 2 } & { 3 } & { 9 } & { 6 } \\ { 4 } & { 1 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right).$ ; confidence 0.519

90. i13009062.png ; $\gamma \operatorname{mod} \Gamma ^ { p^m } \mapsto \gamma \operatorname { mod } \Gamma ^ { p ^ { n } }$ ; confidence 0.519

91. t130140112.png ; $t \in Q_0$ ; confidence 0.519

92. f120110200.png ; $C _ { \delta } = \{ z : | \operatorname { Im } z | < \delta ( | \operatorname { Re } { z | } + 1 ) \}$ ; confidence 0.519

93. w130080145.png ; $\Sigma _ { g }$ ; confidence 0.519

94. m1302007.png ; $\mathfrak { X } ( M , P )$ ; confidence 0.519

95. d12023092.png ; $F = \operatorname { diag } \{ f _ { 0 } , \dots , f _ { n - 1 } \}$ ; confidence 0.519

96. f12019074.png ; $\omega ^ { n} \neq \omega$ ; confidence 0.519

97. s13062090.png ; $\mu _ { \operatorname{d} }$ ; confidence 0.519

98. b130290177.png ; $\alpha _ { 1 } ^ { n _ { 1 } } , \dots , \alpha _ { d } ^ { n _ { d } }$ ; confidence 0.519

99. f0401005.png ; $x \in \mathbf{R} ^ { 4 }$ ; confidence 0.519

100. d0300909.png ; $P _ { \nu } + R _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.519

101. h1300707.png ; $[ k ^ { p } ( a _ { 1 } , \dots , a _ { s } ) : k ^ { p } ] = p ^ { s }$ ; confidence 0.519

102. c02211062.png ; $\mu _ { 1 } , \dots , \mu _ { m }$ ; confidence 0.519

103. c1203101.png ; $Q _ { n } ( f ) = \sum _ { i = 1 } ^ { n } c _ { i } f ( x _ { i } )$ ; confidence 0.518

104. l120170193.png ; $\tau \notin \operatorname{Wh} ^ { * } ( \pi )$ ; confidence 0.518

105. e13003086.png ; $\mathbf{Q} ( \zeta ( p ) )$ ; confidence 0.518

106. w12005048.png ; $\mathcal{D} \otimes \mathcal{D} = \mathbf{R} [ x , y ] / \langle x ^ { 2 } , y ^ { 2 } \rangle$ ; confidence 0.518

107. b01501020.png ; $j_\gamma : B O _ { r } \rightarrow B O _ { r + 1}$ ; confidence 0.518

108. v13007016.png ; $( \overset{\rightharpoonup} { n } . \nabla \phi ) = U \overset{\rightharpoonup}{ n } . \overset{\rightharpoonup}{ x }.$ ; confidence 0.518

109. c13009030.png ; $\frac { d C _ { j } } { d x } ( x _ { k } ) = \left\{ \begin{array} { l l } { \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = 0 ,} \\ { - \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = N, } \\ { - \frac { x _ { j } } { 2 ( 1 - x _ { j } ^ { 2 } ) } } & { \text { for } j = k , 0 < j < N ,} \\ { ( - 1 ) ^ { j + k } \frac { \bar{c} _ { k } } { \bar{c} _ { j } ( x _ { k } - x _ { j } ) } } & { \text { for } j \neq k, } \end{array} \right.$ ; confidence 0.518

110. p12013012.png ; $( 1 + \sqrt { 5 } ) / 2$ ; confidence 0.518

111. b12051048.png ; $x_{+}$ ; confidence 0.518

112. j13004073.png ; $\alpha _ { e} ( z ) \neq 0$ ; confidence 0.518

113. a01093017.png ; $\leq 1$ ; confidence 0.518

114. w120110216.png ; $m ( X ) \leq C ( 1 + G _ { X } ^ { \sigma } ( X - Y ) ) ^ { N } m ( Y ),$ ; confidence 0.518

115. q120070142.png ; $G _ { q } , U _ { q } ( \mathfrak { g } )$ ; confidence 0.518

116. c12018024.png ; $y ^ { 1 } , \dots , y ^ { q }$ ; confidence 0.518

117. a130050149.png ; $= \prod _ { p \in P } ( 1 + | p | ^ { - z } + | p | ^ { - 2 z } + \ldots ) =$ ; confidence 0.517

118. m13019030.png ; $f _ { 0 } , f _ { 1 } , \dots$ ; confidence 0.517

119. o13006029.png ; $P _ { \mathcal{E}}$ ; confidence 0.517

120. c13021025.png ; $w _ { L _ { - } } = w _ { L _ { + } } * w _ { L _ { 0 } }$ ; confidence 0.517

121. c1202103.png ; $A _ { n } \in\mathcal{ A} _ { n }$ ; confidence 0.517

122. c12001049.png ; $F \subset \mathbf{P} ^ { n - 1 }$ ; confidence 0.517

123. y1200308.png ; $^ { * } F _ { A } = - F _ { A }.$ ; confidence 0.517

124. s13064031.png ; $\operatorname{wind}( a - z )$ ; confidence 0.517

125. a13032038.png ; $S _ { 1 } , S _ { 2 } , \ldots$ ; confidence 0.517

126. w12021046.png ; $( s , \dots , s , B _ { m } )$ ; confidence 0.517

127. c120210116.png ; $P _ { n , \theta _ { n } }$ ; confidence 0.517

128. w12005052.png ; $f : \mathbf{R} ^ { m } \rightarrow \mathbf{R}$ ; confidence 0.517

129. t1302103.png ; $x = [ a , b ]$ ; confidence 0.517

130. v13005046.png ; $Y ( \mathbf{1} , x ) = 1$ ; confidence 0.517

131. h13002070.png ; $ \geq N$ ; confidence 0.517

132. d12030038.png ; $\mu_Z$ ; confidence 0.517

133. a0102407.png ; $j = 0 , \dots , n$ ; confidence 0.517

134. i130090127.png ; $\mu _ { p } ( K / k ) = \mu ( X )$ ; confidence 0.517

135. a12008041.png ; $v = d u / d t$ ; confidence 0.516

136. b12040028.png ; $G \times F$ ; confidence 0.516

137. t12008027.png ; $\operatorname { max } \{ | x | , | y | , p _ { 1 } ^ { z _ { 1 } } \ldots p _ { s } ^ { z _ { s } } \}$ ; confidence 0.516

138. a13023010.png ; $P _ {\overline{U+V}}$ ; confidence 0.516

139. l120170233.png ; $T _ { \mathcal{P} }$ ; confidence 0.516

140. c12018059.png ; $g = E d x \bigotimes d x +$ ; confidence 0.516

141. s0833602.png ; $J _ { n } ( z ) = \frac { 1 } { \pi } \int _ { 0 } ^ { \pi } \operatorname { cos } ( n \theta - z \operatorname { sin } \theta ) d \theta +$ ; confidence 0.516

142. i13008014.png ; $X ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 2 } ^ { \prime } = L _ { 2 } ^ { \prime } \cap L _ { 3 } ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 3 } ^ { \prime }$ ; confidence 0.516

143. m130180103.png ; $\mu ( U , V ) = ( - 1 ) ^ { d } q ^ { d ( d - 1 ) / 2 },$ ; confidence 0.516

144. d11022041.png ; $x _ { 1 } \leq x \leq x _ { m }$ ; confidence 0.516

145. t1300408.png ; $j = 1,2 , \dots$ ; confidence 0.516

146. a01293026.png ; $x _ { m }$ ; confidence 0.516

147. f13001019.png ; $\mathbf{F} _ { q } [ x ]$ ; confidence 0.516

148. i12006043.png ; $\operatorname{PredSucc}( x ) = \{ y : y <_{P} z \ \text { for allz } \in \operatorname { Succ } ( x ) \}$ ; confidence 0.516

149. b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516

150. d1202909.png ; $\sum _ { q = 1 } ^ { \infty } \varphi ( q ) f ( q )$ ; confidence 0.516

151. d12012052.png ; $j = 1 , \dots , m - 1$ ; confidence 0.516

152. b01571021.png ; $k = 0 , \dots , n$ ; confidence 0.516

153. e12012032.png ; $\operatorname { log } L ( \theta | Y _ { aug } )$ ; confidence 0.516

154. l12003018.png ; $\mathcal{S} \text{q} ^ { 0 } = \operatorname{Id}$ ; confidence 0.516

155. g13001081.png ; $\operatorname { log } _ { \omega } 0 = \infty$ ; confidence 0.516

156. e12015043.png ; $\mathcal{B} _ { j k \text{l}} ^ { i }$ ; confidence 0.516

157. z13011033.png ; $G _ { n } ( f ( k , n ) ) = \operatorname { max } \left\{ k ^ { \prime } : f _ { ( k ^ { \prime } , n ) } = f ( k , n ) \right\}$ ; confidence 0.516

158. y12004015.png ; $\operatorname { inf } _ { u \in \mathcal{A} } I ( u )$ ; confidence 0.516

159. g1200508.png ; $\subset \mathbf{R} ^ { m }$ ; confidence 0.515

160. j12002034.png ; $\varphi _ { 2 } + i \widetilde { \varphi } _ { 2 }$ ; confidence 0.515

161. c12008088.png ; $\Delta ( z _ { 1 } , z _ { 2 } ) = \operatorname { det } \left[ \begin{array} { c c } { E _ { 1 } z _ { 1 } - A _ { 1 } } & { E _ { 2 } z _ { 2 } - A _ { 2 } } \\ { E _ { 3 } z _ { 1 } - A _ { 3 } } & { E _ { 4 } z _ { 2 } - A_4 } \end{array} \right] =$ ; confidence 0.515

162. l12006033.png ; $\langle \lambda | G ( z ) \phi ) = \frac { 1 } { z - \lambda } \langle \lambda | V \phi ) ( \phi , G ( z ) \phi ).$ ; confidence 0.515

163. l13008018.png ; $- c _ { 1 } + c _ { 3 } d ^ { \nu } \operatorname { log } ( \rho / | \omega | )$ ; confidence 0.515

164. d12005023.png ; $\mathbf{R} = \text{Dbx} _ { f }$ ; confidence 0.515

165. m12015013.png ; $\left( \begin{array} { c c c } { x _ { 11 } } & { \dots } & { x _ { 1 n} } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } } & { \dots } & { x _ { p n} } \end{array} \right),$ ; confidence 0.515

166. n067520331.png ; $\{ f _ { j _ { 1 } } , \dots , f _ { j _ { m } } \}$ ; confidence 0.515

167. f13029019.png ; $T _ { \operatorname{prod} } \times T _ { m }$ ; confidence 0.515

168. c13007095.png ; $f ( X ^ { \prime } , X ^ { \prime } Y ^ { \prime } ) = X ^ { \prime d } f ^ { \prime } ( X ^ { \prime } , Y ^ { \prime } )$ ; confidence 0.515

169. b13012073.png ; $\Delta _ { \varepsilon } ( t ) = ( 1 - | t | / \varepsilon ) _ { + }$ ; confidence 0.515

170. a13013026.png ; $\phi$ ; confidence 0.515

171. w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515

172. m13014080.png ; $\mathcal{D} \subset \mathbf{C} ^ { n }$ ; confidence 0.515

173. b12029014.png ; $\varepsilon _ { x } ^ { A } ( s ) = \widehat { R } _ { s } ^ { A } ( x )$ ; confidence 0.515

174. c12021073.png ; $d P _ { n } ^ { \prime } / d P_n$ ; confidence 0.515

175. a13027062.png ; $n \geq N_0$ ; confidence 0.515

176. c12008032.png ; $\Delta \in C ^ { n \times n }$ ; confidence 0.515

177. i130060145.png ; $q ( x ) \not\equiv 0$ ; confidence 0.515

178. d03211034.png ; $\tau \rightarrow \infty$ ; confidence 0.515

179. c13026021.png ; $\langle T , \phi \rangle$ ; confidence 0.515

180. t12006071.png ; $E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } )$ ; confidence 0.515

181. e1300204.png ; $( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$ ; confidence 0.515

182. i12004071.png ; $K ( s _ { r } )$ ; confidence 0.515

183. p07548012.png ; $\supset , \neg$ ; confidence 0.515

184. t12014022.png ; $k \in L ^ { 1 } ( \mathbf{R} )$ ; confidence 0.515

185. f13009035.png ; $U _ { N } ^ { ( k ) } ( x )$ ; confidence 0.514

186. c12017022.png ; $R = \{ r _ { 1 } , \dots , r _ { m } \}$ ; confidence 0.514

187. s13051075.png ; $j \in \{ 1 , \dots , m \}$ ; confidence 0.514

188. m12012085.png ; $g b = q b $ ; confidence 0.514

189. l12017024.png ; $K ^ { 2 } \swarrow L ^ { 3 } \searrow \operatorname{pt}$ ; confidence 0.514

190. i12006019.png ; $P = ( X _ { P } , < _ { P } )$ ; confidence 0.514

191. s130510128.png ; $v \in F ( u )$ ; confidence 0.514

192. c12002011.png ; $\widehat{u}$ ; confidence 0.514

193. b130290186.png ; $R ( I )$ ; confidence 0.514

194. c12026058.png ; $0 \leq i \leq J$ ; confidence 0.514

195. m13022060.png ; $Z ( a g a ^ { - 1 } , a h a ^ { - 1 } ; z ) = Z ( g , h ; z )$ ; confidence 0.514

196. b12009048.png ; $f ( z , \tau ) / \tau$ ; confidence 0.514

197. b1300608.png ; $\| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.514

198. i12004097.png ; $f = \int _ { \partial D } f \bigwedge K _ { q } - \overline { \partial _ { z } } \int f \bigwedge K _ { q- 1 } + \int _ { D } \overline { \partial } f \bigwedge K _ { q }.$ ; confidence 0.514

199. c13019037.png ; $N ^ { \prime } / L ^ { \prime }$ ; confidence 0.514

200. s12030010.png ; $X ^ { G } \rightarrow X ^ { h G }$ ; confidence 0.514

201. c120180153.png ; $\gamma : \mathcal{E}_{*} \rightarrow \mathcal{E}$ ; confidence 0.514

202. b13006032.png ; $\Lambda = \operatorname { diag } \{ \lambda _ { 1 } , \ldots , \lambda _ { n } \}$ ; confidence 0.514

203. x12003031.png ; $K ( \Omega ) = \int _ { \lambda \bigcap \Omega \neq \phi } d \omega ( \lambda ),$ ; confidence 0.514

204. b11066034.png ; $\operatorname{BMO}$ ; confidence 0.514

205. g13001025.png ; $x \mapsto x ^ { q }$ ; confidence 0.514

206. f12020020.png ; $v _ { n+1 } = A v _ { n}$ ; confidence 0.514

207. f1302106.png ; $L _ { \mathbf{C} } ^ { 1 } ( G )$ ; confidence 0.513

208. d11008032.png ; $( L ^ { H } , w ^ { H } )$ ; confidence 0.513

209. a13030073.png ; $\mathcal{I} ( \theta )$ ; confidence 0.513

210. e12027013.png ; $p _ { m } ^ { \alpha , \beta }$ ; confidence 0.513

211. m12015063.png ; $\frac { \Gamma _ { p } \left[ \frac { \langle n + m + p - 1 \rangle} { 2 } \right] } { \pi ^ { m p / 2 } \Gamma _ { p } ( ( n + p - 1 ) / 2 ) } | \Sigma | ^ { - m / 2 } | \Omega | ^ { - p / 2 } \times$ ; confidence 0.513

212. l120130104.png ; $a \in \widetilde{\mathbf{Z}} ^ { n}$ ; confidence 0.513

213. r082060124.png ; $H _ { g }$ ; confidence 0.513

214. b120210114.png ; $H ^ { i } ( \mathfrak{a} , M )$ ; confidence 0.513

215. c12004012.png ; $( f \in H _ { c } ( D ) )$ ; confidence 0.513

216. w12006095.png ; $\xi ( f . g ) = \xi ( f ) g + f . \xi ( g ) + \xi ( f ) . \xi ( g ),$ ; confidence 0.513

217. a13027038.png ; $Q _ { n } y = \sum _ { i = 1 } ^ { n } ( y , \psi _ { i } ) \psi _ { i }$ ; confidence 0.513

218. o13003037.png ; $e _ { j } * e _ { k } = \sum _ { l = 1 } ^ { 8 } ( \sqrt { 3 } d _ { j k l } - f _ { j k l } ) e _ { l }.$ ; confidence 0.513

219. d13011048.png ; $\gamma_3$ ; confidence 0.513

220. b13029037.png ; $A = B / ( X _ { 1 } , \dots , X _ { d } ) \bigcap ( Y _ { 1 } , \dots , Y _ { d } ),$ ; confidence 0.513

221. c13026012.png ; $\operatorname{supp} \phi_{j} \subset K$ ; confidence 0.513

222. b12001012.png ; $u ^ { \prime }$ ; confidence 0.513

223. n06663094.png ; $v _ { i } > 0$ ; confidence 0.513

224. m12015037.png ; $f _ { Y } ( Y )$ ; confidence 0.513

225. d11008019.png ; $[ L : K ] = d.e.f.g$ ; confidence 0.512

226. m13025057.png ; $\rho _ { \varepsilon }$ ; confidence 0.512

227. a12026075.png ; $y _ { c }$ ; confidence 0.512

228. a1202708.png ; $\rho : \operatorname { Gal } ( N / K ) \rightarrow G l _ { n } ( C )$ ; confidence 0.512

229. p12015021.png ; $\widehat { \chi }_{K}$ ; confidence 0.512

230. a12016019.png ; $U_i$ ; confidence 0.512

231. c1200304.png ; $J = [ a, b ] \subset \mathbf{R}$ ; confidence 0.512

232. d12029089.png ; $m = 1,2 , \dots$ ; confidence 0.512

233. v096900145.png ; $Z = \cup _ { p = 1 } ^ { \aleph _ { 0 } } Z _ { p }$ ; confidence 0.512

234. d0302804.png ; $\operatorname { lim } _ { n \rightarrow \infty } \left[ a _ { 0 } + \frac { n } { n + 1 } a _ { 1 } + \frac { n ( n - 1 ) } { ( n + 1 ) ( n + 2 ) } a _ { 2 } + ... \right.$ ; confidence 0.512

235. c120080117.png ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.512

236. n12006032.png ; $T T$ ; confidence 0.512

237. a12016080.png ; $y _ { i } = \Delta \text { sales } = \left( \frac { c _ { 1 } } { 1 - \lambda } \right) \frac { I } { k } ( \text { in market } i )$ ; confidence 0.512

238. w130090105.png ; $\{ g _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.512

239. v120020130.png ; $F ^ { * } = p ^ { * - 1} q ^ { * }$ ; confidence 0.512

240. a130040586.png ; $\operatorname{Fm} _ { P }$ ; confidence 0.512

241. b12014045.png ; $s _ { i } ( z ) a ( z ) \equiv r _ { i } ( z ) ( \operatorname { mod } b ( z ) )$ ; confidence 0.512

242. m130140101.png ; $\operatorname { det } \left\| \frac { 1 } { b _ { j } ^ { l } } \right\| \neq 0,$ ; confidence 0.511

243. c11031012.png ; $X _ { \lambda }$ ; confidence 0.511

244. w13004038.png ; $N = \frac { 1 } { | g | ^ { 2 } + 1 } ( 2 \operatorname { Re } g , 2 \operatorname { Im } g , | g | ^ { 2 } - 1 )$ ; confidence 0.511

245. h13002058.png ; $q \in \mathbf{N}$ ; confidence 0.511

246. t12021028.png ; $M _ { 1 } , M _ { 2 } , \ldots$ ; confidence 0.511

247. c023130157.png ; $\operatorname{tr}$ ; confidence 0.511

248. c120180422.png ; $k = m + ( q _ { 1 } + \ldots + q _ { m } ) / 2$ ; confidence 0.511

249. i13007082.png ; $q \in L ^ { 2_0 } (\mathbf{ R} ^ { 3 } )$ ; confidence 0.511

250. c120180396.png ; $\operatorname { max } \{ q _ { 1 } + 2 , \ldots , q _ { m } + 2 \}$ ; confidence 0.511

251. b130300164.png ; $D ( 2 n _ { 2 } )$ ; confidence 0.511

252. b12031084.png ; $\operatorname{lim sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( x ) = + \infty$ ; confidence 0.511

253. d12002071.png ; $R ^ { \prime } \subseteq R$ ; confidence 0.511

254. k12005048.png ; $\lambda = \operatorname { sup } \{ t \in \mathbf{Q} : H + t ( K _ { X } + B ) \text { is } f\square \text{ ample} \}$ ; confidence 0.511

255. b12015095.png ; $\mathsf{P} _ { 0 }$ ; confidence 0.510

256. a12026046.png ; $y \cong \widetilde{y}$ ; confidence 0.510

257. f13019034.png ; $j = 0 , \dots , N - 1$ ; confidence 0.510

258. b12037024.png ; $g _ { 1 } , \ldots , g _ { k }$ ; confidence 0.510

259. c120180281.png ; $a \in C ^ { \infty } ( M )$ ; confidence 0.510

260. v09649073.png ; $X ^ {**}$ ; confidence 0.510

261. e1201909.png ; $p + F . v $ ; confidence 0.510

262. w13017045.png ; $y _ { t+r} $ ; confidence 0.510

263. f04049011.png ; $\frac { \nu _ { 2 } } { \nu _ { 2 } - 2 } \quad \text { for } \nu _ { 2 } > 2$ ; confidence 0.510

264. h13003012.png ; $r ( z ) = p ( z ) / q ( z )$ ; confidence 0.510

265. c12008059.png ; $\Delta ( A , E ) = \sum _ { i = 0 } ^ { n } a _ { i , n - i }A ^ { i } E ^ { n - i } = 0.$ ; confidence 0.510

266. w1202004.png ; $R = I - \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } L _ { \nu }$ ; confidence 0.510

267. b12049055.png ; $m_0$ ; confidence 0.510

268. t13021047.png ; $a _ { N / 2 + k}$ ; confidence 0.510

269. a13006092.png ; $G _ { q , k }$ ; confidence 0.510

270. w12006020.png ; $T _ { A } U _ { i } = U _ { i } \times N ^ { m } \subset T _ { A } \mathbf{R} ^ { m }$ ; confidence 0.510

271. e13007037.png ; $M \leq N$ ; confidence 0.510

272. a130240420.png ; $\zeta _ { 1 } , \ldots , \zeta _ { q }$ ; confidence 0.510

273. b13020046.png ; $\operatorname { span } \{ e _ { i } , f _ { i } , h _ { i i } \}$ ; confidence 0.510

274. l06004024.png ; $| r _ { 1 } | \geq \ldots \geq | r _ { p } | > | r _ { p } + 1 | \geq \ldots \geq | r _ { n } |,$ ; confidence 0.510

275. c120180204.png ; $\tau _ { p } : \otimes ^ { 4 } \mathcal{E} \rightarrow \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.510

276. c12003013.png ; $K \subset G$ ; confidence 0.510

277. k055840214.png ; $x \in \mathcal{K}$ ; confidence 0.510

278. e12016016.png ; $\int \left( R _ { h} + \frac { 1 } { 2 } f ^ { - 2 } h ^ { \alpha \beta } \partial _ { \alpha } \epsilon\partial _ { \beta } \overline { \mathcal{E} } \right) d \mu _ { h},$ ; confidence 0.509

279. s12025020.png ; $E _ { n + 1 } ( x ) = T _ { n + 1 } ( x )$ ; confidence 0.509

280. i130060167.png ; $| F ( 2 x ) | \leq c \sigma ( x ) , | A ( x , y ) | \leq c \sigma \left( \frac { x + y } { 2 } \right) ,$ ; confidence 0.509

281. c12002048.png ; $ c _g = \int _ { 0 } ^ { \infty } g ( t ) \operatorname { log } \frac { 1 } { t } d t,$ ; confidence 0.509

282. f12023029.png ; $\operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.509

283. z13007048.png ; $1 \in \mathbf{Z }( G / A )$ ; confidence 0.509

284. m1302308.png ; $Z = \sum _ { i = 1 } ^ { t } r _ { j } C _ { j }$ ; confidence 0.509

285. c13010032.png ; $(C)\int _ { A } f _ { 1 } d m \leq ( C ) \int _ { A } f_2 dm$ ; confidence 0.509

286. b12050034.png ; $\mathcal{Z} _ { 0 } \cap [ 0 , t] $ ; confidence 0.509

287. h12013048.png ; $\omega : I \rightarrow X$ ; confidence 0.509

288. e1200403.png ; $\nabla ^ { 2 } ( g (. ; t ) ^ { * } f ( . ) ) = 0$ ; confidence 0.509

289. h12013052.png ; $T o p$ ; confidence 0.509

290. o1300805.png ; $q _ { m } ( x ) \in L _ { 1,1 } (\mathbf{ R} _ { + } ) : = \left\{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty \right\}.$ ; confidence 0.509

291. a01105024.png ; $\mathcal{O} _ { S }$ ; confidence 0.509

292. t130130102.png ; $pd _ { \Lambda } T = n < \infty$ ; confidence 0.509

293. w12006022.png ; $T _ { A } : \mathcal{M} f \rightarrow \mathcal{M} f$ ; confidence 0.509

294. s12023052.png ; $\frac { B _ { - ( \delta + p - 1 ) / 2} \left( \frac { 1 } { 4 } \Sigma T T ^ { \prime } \right) } { \Gamma _ { p } \left[ \frac { 1 } { 2 } ( \delta + p - 1 ) \right] },$ ; confidence 0.509

295. t1200509.png ; $d f _ { x } : T V _ { x } \rightarrow T W _ { f ( x )}$ ; confidence 0.509

296. w120110205.png ; $( q_j , p _ { j } )$ ; confidence 0.508

297. l13001046.png ; $||S_{NB} ||< C N ^ { ( n - 1 ) / 2 }$ ; confidence 0.508

298. b12018030.png ; $\varphi ( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.508

299. c12030055.png ; $P = I - \sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * }$ ; confidence 0.508

300. n067520324.png ; $n , m = 0,1 , \dots ,$ ; confidence 0.508

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/57. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/57&oldid=45936