Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/70

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 00:10, 13 February 2020 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 70 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. b12021051.png ; $k = 1 , \ldots , r = \operatorname { dim } a / p$ ; confidence 0.264

2. b1201009.png ; $( L F ) _ { n } ( X ) = \{ H _ { n } , F _ { n } ( X ) \}$ ; confidence 0.264

3. f1302806.png ; $A x \nsubseteq b$ ; confidence 0.264

4. r08094048.png ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264

5. w13012025.png ; $T _ { y }$ ; confidence 0.264

6. w120110258.png ; $\{ u \in S ^ { \prime } ( R ^ { n } ) : \forall a \in S ( m , G ) , a ^ { w } u \in L ^ { 2 } ( R ^ { n } ) \}$ ; confidence 0.264

7. t120200141.png ; $\geq \frac { 1 } { n } ( \frac { n } { 16 e ( m + n ) } ) ^ { n } \times x _ { k _ { 1 } \leq l _ { 1 } \leq k \leq l _ { 2 } \leq k _ { 2 } } | b _ { 1 } + \ldots + b _ { 2 } |$ ; confidence 0.264

8. v0960306.png ; $\ddot { z } - \mu ( z - \frac { z \square ^ { 3 } } { 3 } ) + z = 0$ ; confidence 0.264

9. a12016073.png ; $\lambda c _ { 1 } + \lambda ^ { 2 } c _ { 1 } + \ldots$ ; confidence 0.264

10. f12021045.png ; $c _ { 1 } ( \lambda ) , \ldots , c _ { j } - 1 ( \lambda )$ ; confidence 0.264

11. s09067036.png ; $M \supset U \rightarrow R ^ { n }$ ; confidence 0.264

12. t120200177.png ; $G _ { 1 } ( r ) = \sum _ { j = 1 } ^ { n } P _ { j } ( r ) z _ { j } ^ { \nu }$ ; confidence 0.264

13. n12010013.png ; $y _ { 1 } = y _ { 0 } + h \sum _ { l = 1 } ^ { s } b _ { l } f ( x _ { 0 } + c _ { l } h , g _ { z } )$ ; confidence 0.263

14. c13009028.png ; $i , j$ ; confidence 0.263

15. a11032022.png ; $A _ { j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { i } } R _ { k + 1 } ^ { ( i ) } ( c _ { l } z ) c _ { i } ^ { l + 1 } \lambda _ { l j } ^ { ( l ) }$ ; confidence 0.263

16. b13026022.png ; $=$ ; confidence 0.263

17. c13009017.png ; $\vec { c } 0 = \vec { c } _ { N } = 2$ ; confidence 0.263

18. l120170164.png ; $K ^ { x } \times 1$ ; confidence 0.263

19. v12002085.png ; $f ^ { * } : H ^ { Y } ( Y , G ) \rightarrow H ^ { Y } ( X , G )$ ; confidence 0.263

20. m13014078.png ; $d \overline { \zeta } [ k ] = d \overline { \zeta } _ { 1 } \wedge \ldots \wedge d \overline { \zeta } _ { k - 1 } \wedge d \overline { \zeta } k + 1 \wedge \ldots \wedge d \overline { \zeta }$ ; confidence 0.263

21. m130260127.png ; $0 \rightarrow A \rightarrow X \stackrel { \pi } { \pi } , B \rightarrow 0$ ; confidence 0.263

22. q1300404.png ; $f : G \rightarrow R ^ { \kappa }$ ; confidence 0.262

23. t130140109.png ; $j = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , s _ { i } )$ ; confidence 0.262

24. c020280152.png ; $x \in K$ ; confidence 0.262

25. w13008019.png ; $y ^ { 2 } = R _ { y } ( \lambda )$ ; confidence 0.262

26. l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262

27. w13007017.png ; $\rho ( h _ { i } ) = \frac { 1 } { 2 } \alpha _ { i l }$ ; confidence 0.262

28. p130100106.png ; $C ^ { x } \backslash K$ ; confidence 0.262

29. t120200243.png ; $* ( x ) - \text { li } x$ ; confidence 0.262

30. b13022080.png ; $X \in T$ ; confidence 0.262

31. b01681032.png ; $=$ ; confidence 0.262

32. c12017023.png ; $[ x _ { 1 } , \dots , x _ { x } ]$ ; confidence 0.262

33. h120120160.png ; $\tau$ ; confidence 0.262

34. t12020035.png ; $\operatorname { inf } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } g _ { 1 } ( k ) } { M _ { d } ( \dot { k } ) }$ ; confidence 0.262

35. f1201701.png ; $G = \langle x _ { 1 } , \dots , x _ { N } : r = 1 \rangle$ ; confidence 0.261

36. d12019019.png ; $Dom ( - \Delta Dir ) = H _ { 0 } ^ { 1 } ( \Omega ) \cap H ^ { 2 } ( \Omega )$ ; confidence 0.261

37. t12021067.png ; $A ( C , q , z ) = ( 1 - z ) ^ { r } z ^ { n - r } t ( M _ { C } ; \frac { 1 + ( q - 1 ) z } { 1 - z } , \frac { 1 } { z } )$ ; confidence 0.261

38. k1200809.png ; $p = \{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.261

39. w12001019.png ; $= \left\{ \begin{array} { l l } { \sum _ { - n \leq i \leq - 1 } f ( i ) g ( i + n ) , } & { n = - m > 0 } \\ { - \sum _ { n \leq i \leq - 1 } f ( i - n ) g ( i ) , } & { n = - m < 0 } \\ { 0 , } & { \left\{ \begin{array} { l } { n + m \neq 0 } \\ { n = m = 0 } \end{array} \right.} \end{array} \right.$ ; confidence 0.261

40. m06257041.png ; $V _ { i }$ ; confidence 0.261

41. f12011026.png ; $\varphi \in P$ ; confidence 0.261

42. g13006099.png ; $K _ { , j } ( A ) : =$ ; confidence 0.261

43. a120160122.png ; $j ^ { \prime } = p _ { t } + 1 , \ldots , p$ ; confidence 0.261

44. b12013037.png ; $L _ { i k } ^ { 2 } ( G )$ ; confidence 0.261

45. c12021050.png ; $\{ L _ { N } \}$ ; confidence 0.261

46. e12023050.png ; $f ( t ) = A ( \sigma _ { t } ) = \int _ { x } ^ { b } L ( x , y ( x ) + t z ( x ) , y ^ { \prime } ( x ) + t z ^ { \prime } ( x ) ) d x$ ; confidence 0.261

47. m12003030.png ; $\Delta _ { y }$ ; confidence 0.261

48. c120180276.png ; $\nabla ( \Theta \otimes \Phi ) = \nabla \Theta \otimes \Phi + \tau _ { p + 1 } ( \Theta \varnothing \nabla \Phi ) \in$ ; confidence 0.260

49. l120120204.png ; $K _ { t o t }$ ; confidence 0.260

50. a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260

51. b1201201.png ; $M = M ^ { X }$ ; confidence 0.260

52. m12012058.png ; $\theta R C$ ; confidence 0.260

53. s13011026.png ; $\partial _ { n } \ldots \partial _ { 1 } \mathfrak { S } _ { w _ { n + 1 } } = \mathfrak { S } _ { w _ { n } }$ ; confidence 0.260

54. z13010064.png ; $\exists x ( \emptyset \in x \wedge \forall y ( y \in x \rightarrow y \cup \{ y \} \in x ) )$ ; confidence 0.260

55. h13009037.png ; $g _ { 0 } , \ldots , g _ { n }$ ; confidence 0.260

56. a130180188.png ; $3 C$ ; confidence 0.260

57. a01139032.png ; $u _ { i }$ ; confidence 0.260

58. b13022090.png ; $q$ ; confidence 0.260

59. s120340130.png ; $M ( \tilde { x } _ { - } , \tilde { x } _ { + } )$ ; confidence 0.259

60. s120230141.png ; $( S _ { 1 } , \dots , S _ { r } ) \sim L _ { r } ^ { ( 1 ) } ( f , n _ { 1 } / 2 , \dots , n _ { r } / 2 )$ ; confidence 0.259

61. l05702032.png ; $A _ { j } n$ ; confidence 0.259

62. a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259

63. a1201308.png ; $m$ ; confidence 0.259

64. v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259

65. w12009096.png ; $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }$ ; confidence 0.259

66. b110220222.png ; $M M _ { Q }$ ; confidence 0.259

67. s13045060.png ; $\rho _ { S } = 12 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } u v d C _ { X , Y } ( u , v ) - 3 =$ ; confidence 0.259

68. a11030015.png ; $( T V \leq n , d ) \rightarrow C * \Omega X _ { n } + 1$ ; confidence 0.259

69. a12023083.png ; $d _ { q } ( \Omega ) = \operatorname { max } _ { \Omega } | z ^ { \not q } |$ ; confidence 0.259

70. b12043067.png ; $\Psi ( x \varnothing x ) = q ^ { 2 } x \otimes x$ ; confidence 0.259

71. p13013028.png ; $\vec { A } _ { 7 }$ ; confidence 0.259

72. p12012020.png ; $F$ ; confidence 0.258

73. w13009099.png ; $I _ { n } ( g ) = \int _ { [ 0,1 ] ^ { n } } g ( t _ { 1 } , \ldots , t _ { n } ) d B ( t _ { 1 } ) \ldots d B ( t _ { n } )$ ; confidence 0.258

74. d0319508.png ; $\mathscr { D }$ ; confidence 0.258

75. h13002078.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma ^ { \phi } , \dots , \alpha _ { q } )$ ; confidence 0.258

76. f13009095.png ; $H _ { N } ^ { ( k ) } ( x ) = F _ { N } ^ { ( k ) } ( x )$ ; confidence 0.258

77. f13005027.png ; $x _ { 0 } \notin \{ p _ { 1 } , \dots , p _ { w } \}$ ; confidence 0.258

78. a12012079.png ; $x _ { t } \geq A y _ { t } + 1$ ; confidence 0.258

79. g12004095.png ; $WF _ { s } u \cap \Gamma = 0$ ; confidence 0.258

80. i130030141.png ; $( D _ { + } ) = \int _ { M } \hat { A } ( M ) Ch ( E ) - \frac { \eta ( D _ { 0 } ) + h } { 2 }$ ; confidence 0.258

81. f11016095.png ; $[ ( n )$ ; confidence 0.258

82. l11004013.png ; $w _ { i } ( x _ { 1 } , \ldots , x _ { N } ) = e \text { for everyw } _ { i } \in X$ ; confidence 0.257

83. t130130113.png ; $K ^ { b } ( F _ { \Lambda } ) ^ { ( T , T [ i ] ) } = 0$ ; confidence 0.257

84. c120180217.png ; $h \otimes k \in S ^ { 2 } \varepsilon \otimes S ^ { 2 } E$ ; confidence 0.257

85. e12007071.png ; $p _ { 1 } p _ { 1 }$ ; confidence 0.257

86. p12015027.png ; $Y$ ; confidence 0.257

87. c13023010.png ; $L _ { - } \sim _ { c } L _ { - } ^ { \prime }$ ; confidence 0.257

88. g130040109.png ; $S ( \phi ) = \int \{ \xi ( x ) , \phi ( x ) \} \theta ( x ) d H ^ { m } | _ { R ( x ) }$ ; confidence 0.257

89. d12016018.png ; $g _ { x } = M _ { t } f _ { 2 } n - 1$ ; confidence 0.257

90. a130040189.png ; $2 t ^ { * } s ^ { * } s$ ; confidence 0.257

91. e12014036.png ; $f v _ { 1 } , \dots , v _ { \rho } ( f )$ ; confidence 0.257

92. s0833607.png ; $P _ { n } ( z ) = \frac { 1 } { 2 \pi i } \int _ { - \infty } \frac { ( t ^ { 2 } - 1 ) ^ { n } } { 2 ^ { n } ( t - z ) ^ { n + 1 } } d t$ ; confidence 0.256

93. s12017065.png ; $\succsim$ ; confidence 0.256

94. a01148046.png ; $a$ ; confidence 0.256

95. a130040400.png ; $Mod ^ { * } S _ { D } = P _ { SD } Mod ^ { * } L _ { D }$ ; confidence 0.256

96. d13006026.png ; $E _ { 1 }$ ; confidence 0.256

97. d12029092.png ; $9 m$ ; confidence 0.256

98. l13001011.png ; $\hat { f } ( k ) = ( 2 \pi ) ^ { - n } \int _ { T ^ { n } } f ( x ) e ^ { - i k x } d x$ ; confidence 0.256

99. p13013027.png ; $A _ { B }$ ; confidence 0.256

100. a01329044.png ; $\sum _ { y }$ ; confidence 0.256

101. c12030044.png ; $O _ { N }$ ; confidence 0.255

102. b12029049.png ; $x \in V \subset U \subset X$ ; confidence 0.255

103. s12017055.png ; $x > z$ ; confidence 0.255

104. b1302806.png ; $u$ ; confidence 0.255

105. t130140174.png ; $96$ ; confidence 0.255

106. a130040531.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n } - 1 , \varphi _ { n }$ ; confidence 0.255

107. a13029020.png ; $HF _ { * } ^ { symp } ( M , L _ { 0 } , L _ { 1 } )$ ; confidence 0.255

108. c026010520.png ; $\xi _ { i r }$ ; confidence 0.255

109. g044270146.png ; $K _ { S }$ ; confidence 0.255

110. e12012098.png ; $( w _ { i } ^ { ( t + 1 ) } , \ldots , w _ { N } ^ { ( t + 1 ) } )$ ; confidence 0.255

111. z13002023.png ; $\underline { f } _ { + a \mathfrak { p } } = + \infty$ ; confidence 0.254

112. a1200803.png ; $\sum _ { i , j = 1 } ^ { m } \alpha _ { i , j } ( x ) n _ { i } ( x ) \partial u / \partial x _ { j } = 0$ ; confidence 0.254

113. d031850339.png ; $( u _ { 1 } , \ldots , u _ { m } )$ ; confidence 0.254

114. f120110197.png ; $Q$ ; confidence 0.254

115. l13010033.png ; $f _ { s l } ( x ) : = - \frac { 1 } { 4 \pi } \int _ { S ^ { 1 } } \hat { f } _ { p p } ( \alpha , \alpha x ) d \alpha$ ; confidence 0.254

116. a130040241.png ; $\Gamma \dagger _ { D } \varphi \text { iff } K ( \Gamma ) \approx L ( \Gamma ) \vDash _ { K } K ( \varphi ) \approx L ( \varphi )$ ; confidence 0.254

117. k12013031.png ; $\dot { i } = 2$ ; confidence 0.254

118. c12016013.png ; $j = i \cdot a _ { i i } = \sum _ { k = 1 } ^ { i } n _ { k i } ^ { 2 }$ ; confidence 0.254

119. s09008044.png ; $\tilde { V }$ ; confidence 0.254

120. l1300803.png ; $p ( \hat { h } )$ ; confidence 0.253

121. f1202104.png ; $\alpha ^ { [ n ] } ( z ) = \sum _ { i = 0 } ^ { \infty } a _ { i } ^ { n } z ^ { i }$ ; confidence 0.253

122. d03168030.png ; $y _ { n }$ ; confidence 0.253

123. b12032051.png ; $1 !$ ; confidence 0.253

124. r13007064.png ; $\sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall t \in C ^ { * } , \forall x _ { i } \in E$ ; confidence 0.253

125. c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253

126. c1202005.png ; $\alpha \wedge ( d \alpha ) ^ { \alpha - 1 } \neq 0$ ; confidence 0.253

127. d03087012.png ; $e _ { 0 }$ ; confidence 0.253

128. b11066035.png ; $| H f \| _ { * } \leq G \| f \| _ { \infty }$ ; confidence 0.253

129. a120260108.png ; $\hat { y } _ { i } \in \hat { A } [ [ X _ { 1 } , \dots , X _ { s _ { i } } ] ]$ ; confidence 0.253

130. b01660012.png ; $Y$ ; confidence 0.253

131. t120140166.png ; $H ^ { 2 } ( C ^ { x } )$ ; confidence 0.253

132. d120020133.png ; $\vec { \mathfrak { c } } \frac { 1 } { \vec { k } } \leq 0$ ; confidence 0.252

133. a1302801.png ; $\alpha = \alpha 0$ ; confidence 0.252

134. n067520175.png ; $J = \left\| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { J ( e _ { i } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right\|$ ; confidence 0.252

135. c02074095.png ; $0 ^ { * }$ ; confidence 0.252

136. c12018061.png ; $P \in M$ ; confidence 0.252

137. b12052039.png ; $y = F ( x _ { + } ) - F ( x _ { c } )$ ; confidence 0.252

138. f1301704.png ; $A _ { 2 } ( G ) = \{ \overline { k } ^ { * } \overline { r } : k , l \in L _ { C } ^ { 2 } ( G ) \}$ ; confidence 0.252

139. b13017039.png ; $\gamma _ { t }$ ; confidence 0.252

140. t12020012.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { d } ( k ) }$ ; confidence 0.252

141. o130060105.png ; $\mathfrak { E } ( \lambda ) = \operatorname { ker } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma )$ ; confidence 0.252

142. b12021037.png ; $X$ ; confidence 0.252

143. g04348025.png ; $s ^ { \gamma } - 1$ ; confidence 0.252

144. p12017040.png ; $\hat { X } = X \oplus 0 \in \operatorname { ker } \delta _ { A , B }$ ; confidence 0.252

145. v1300503.png ; $V ^ { 4 } = \oplus _ { n } \geq - 1 V _ { n } ^ { \Perp }$ ; confidence 0.251

146. s12005013.png ; $\gamma _ { A } = S _ { N } ( 0 )$ ; confidence 0.251

147. d13013035.png ; $\Psi _ { + } = e ^ { i e \chi / \hbar } \Psi _ { - } = e ^ { 2 i e g \phi / \hbar } \Psi _ { - }$ ; confidence 0.251

148. s1305006.png ; $\left( \begin{array} { l } { n } \\ { 0 } \end{array} \right) < \ldots < \left( \begin{array} { c } { n } \\ { \lfloor n / 2 \rfloor } \end{array} \right) = \left( \begin{array} { c } { n } \\ { \lceil n / 2 \rceil } \end{array} \right) > \ldots > \left( \begin{array} { l } { n } \\ { n } \end{array} \right)$ ; confidence 0.251

149. h13003046.png ; $70$ ; confidence 0.251

150. a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251

151. b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251

152. c12021036.png ; $P _ { W } ( A _ { W } ) \rightarrow 0$ ; confidence 0.251

153. k13001022.png ; $| s | \lambda |$ ; confidence 0.251

154. c13010044.png ; $\int _ { A } f d m = \operatorname { sup } _ { \alpha \in [ 0 , + \infty ] } [ \alpha \wedge m ( A \cap F _ { \alpha } ) ]$ ; confidence 0.251

155. b110220104.png ; $I _ { DR } ^ { i } ( X / R )$ ; confidence 0.251

156. s12034024.png ; $SH ^ { * } ( M , \omega , \phi ) = SH ^ { * } ( N , \tilde { \omega } , L _ { + } , L - )$ ; confidence 0.251

157. b12012012.png ; $v ^ { 1 }$ ; confidence 0.251

158. q120070134.png ; $\Delta t ^ { i } \square j = t ^ { i } \square _ { \alpha } \otimes t ^ { \alpha } \square j , \epsilon t ^ { i } \square j = \delta ^ { i } \square j$ ; confidence 0.251

159. a011800102.png ; $NE$ ; confidence 0.251

160. c026600118.png ; $x \in X _ { 0 }$ ; confidence 0.251

161. f12009023.png ; $H ( C ^ { \times } )$ ; confidence 0.251

162. l11002056.png ; $a , b _ { 1 } , \dots , b _ { N }$ ; confidence 0.251

163. c021620383.png ; $ch$ ; confidence 0.251

164. a01186049.png ; $8$ ; confidence 0.251

165. k05507051.png ; $\gamma _ { \omega }$ ; confidence 0.251

166. m12015065.png ; $\frac { 1 } { \beta _ { p } ( \alpha , b ) } | U | ^ { \alpha - ( p + 1 ) / 2 } | I _ { p } - U | ^ { \phi - ( p + 1 ) / 2 }$ ; confidence 0.250

167. t12021072.png ; $h _ { 1 , h } ( x )$ ; confidence 0.250

168. c11045030.png ; $A _ { f } N$ ; confidence 0.250

169. d03202028.png ; $z = n$ ; confidence 0.250

170. f120150182.png ; $\nu ( A ) = \operatorname { sup } _ { M } \text { inf } \{ \| A x \| : x \in M , \| x \| = 1 \}$ ; confidence 0.250

171. s13053068.png ; $St = \sum _ { P } \pm 1 _ { F } ^ { G }$ ; confidence 0.250

172. e1300107.png ; $f ^ { \rho } \in I : = ( f _ { 1 } , \dots , f _ { \infty } )$ ; confidence 0.250

173. d12018021.png ; $0.7$ ; confidence 0.250

174. b12037038.png ; $\sigma _ { 1 }$ ; confidence 0.250

175. n13003062.png ; $\hat { u } = ( L - \operatorname { Re } ( \lambda ) I ) ^ { - 1 } f$ ; confidence 0.250

176. a01212027.png ; $6$ ; confidence 0.250

177. n06752075.png ; $e _ { j } ^ { x _ { i j } }$ ; confidence 0.250

178. f1202307.png ; $[ K _ { 1 } , [ K _ { 2 } , K _ { 3 } ] ] = [ [ K _ { 1 } , K _ { 2 } ] , K _ { 3 } ] + ( - 1 ) ^ { k _ { 1 } k _ { 2 } } [ K _ { 2 } , [ K _ { 1 } ]$ ; confidence 0.250

179. a11030045.png ; $C \times \Omega g \circ \theta X$ ; confidence 0.250

180. a130040612.png ; $97$ ; confidence 0.250

181. e1300509.png ; $\sum _ { n \in Z } \frac { [ \lambda + \alpha ; n ] [ \mu - n + 1 ; n ] } { [ \mu - n + \beta ; n ] [ \lambda + 1 ; n ] } x ^ { \lambda + x } y ^ { \mu - x }$ ; confidence 0.249

182. a011650267.png ; $x _ { 1 } , \dots , x _ { k }$ ; confidence 0.249

183. e120020122.png ; $Y ^ { \perp }$ ; confidence 0.249

184. b01557039.png ; $00$ ; confidence 0.249

185. t13004036.png ; $D Q _ { n } ( x ) : = x ^ { n }$ ; confidence 0.249

186. b12024019.png ; $k _ { 1 } , \dots , k _ { \gamma }$ ; confidence 0.249

187. a11030016.png ; $X _ { n } + 1$ ; confidence 0.249

188. p12017058.png ; $\delta _ { A , B } ( X ) \in N _ { \epsilon } ^ { \prime } \Rightarrow \delta _ { A ^ { * } , B ^ { * } } ( X ) \in N$ ; confidence 0.249

189. g120040183.png ; $T ^ { N } = R ^ { N } / ( 2 \pi Z ) ^ { N }$ ; confidence 0.249

190. g13001023.png ; $\{ \alpha , \alpha ^ { q } , \ldots , \alpha ^ { q ^ { n - 1 } } \}$ ; confidence 0.249

191. b12004055.png ; $q _ { X } = \operatorname { lim } _ { s \rightarrow 0 + } \frac { \operatorname { log } s } { \operatorname { log } \| D _ { s } \| _ { X } }$ ; confidence 0.248

192. f12010090.png ; $J = \left( \begin{array} { c c } { 0 } & { I _ { n } } \\ { - I _ { N } } & { 0 } \end{array} \right)$ ; confidence 0.248

193. b12042093.png ; $v$ ; confidence 0.248

194. d120020220.png ; $x = \sum _ { k \in P ^ { \prime } } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R ^ { \prime } } \overline { \mu } _ { k } x ^ { ( k ) }$ ; confidence 0.248

195. h12012041.png ; $d ^ { \prime } x$ ; confidence 0.248

196. b12002047.png ; $\| \beta _ { n , F } - \beta _ { n } \| = o ( \frac { 1 } { n ^ { 1 / 2 - \varepsilon } } )$ ; confidence 0.248

197. l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248

198. m12007053.png ; $P ( x _ { 1 } ^ { - 1 } , \ldots , x _ { n } ^ { - 1 } ) / P ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.248

199. d032150131.png ; $\hat { U }$ ; confidence 0.248

200. o130010145.png ; $\rho \leq \mathfrak { c } _ { 1 } ( \frac { \operatorname { ln } | \operatorname { ln } \delta | } { | \operatorname { ln } \delta | } ) ^ { c _ { 2 } }$ ; confidence 0.248

201. b12015079.png ; $= \frac { 1 } { n ! } \sum _ { \pi \text { a permutation } } d ( x _ { \pi } \langle 1 \rangle , \ldots , x _ { \pi } ( n ) ) , ( x _ { 1 } , \ldots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.248

202. n06663053.png ; $\eta = \ldots r _ { N } = r$ ; confidence 0.247

203. c12007016.png ; $+ ( - 1 ) ^ { n + 1 } \operatorname { pr } ( \alpha _ { 2 } , \dots , \alpha _ { n + 1 } ) \} ( \alpha _ { 1 } , \dots , \alpha _ { n + 1 } )$ ; confidence 0.247

204. c120180386.png ; $\hat { g }$ ; confidence 0.247

205. d120020103.png ; $\overline { q }$ ; confidence 0.247

206. a1301308.png ; $s l _ { 2 }$ ; confidence 0.247

207. o13006053.png ; $\overline { \gamma } ^ { \prime } = \gamma ^ { \prime \prime }$ ; confidence 0.247

208. b13029023.png ; $l _ { A } ( M / qM ) = e _ { q } ^ { 0 } ( M )$ ; confidence 0.247

209. j13004037.png ; $\pi$ ; confidence 0.246

210. c120010154.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) s \wedge ( \overline { \partial } s ) ^ { n - 1 } } { \langle \zeta - z , s \rangle ^ { \lambda } } , z \in E$ ; confidence 0.246

211. w1200204.png ; $l _ { 1 } ( P , Q ) = \operatorname { inf } \{ E d ( X , Y ) \}$ ; confidence 0.246

212. q12001093.png ; $\pi ^ { - i }$ ; confidence 0.246

213. a130040526.png ; $Co _ { Alg } FMod ^ { * } L _ { D } A$ ; confidence 0.246

214. q12003022.png ; $X f = ( \langle X , \rangle \otimes id _ { A } ) L ( f )$ ; confidence 0.246

215. l1300602.png ; $z _ { 1 } + 1 \equiv \alpha z _ { i } + r ( \operatorname { mod } m ) , 0 \leq z _ { i } < m$ ; confidence 0.246

216. f12023012.png ; $+ ( - 1 ) ^ { k } ( d \varphi \wedge i _ { X } \psi \otimes Y + i \gamma \varphi \wedge d \psi \otimes X )$ ; confidence 0.246

217. j12002024.png ; $\varphi _ { I } = \int _ { I } \varphi d \vartheta / | I |$ ; confidence 0.246

218. d120280126.png ; $g \in H ^ { n , n - 1 } ( C ^ { n } \backslash D )$ ; confidence 0.246

219. s12024012.png ; $Cl _ { l = 1 } ^ { \infty } ( X _ { i } , x _ { i 0 } ) = ( X , x _ { 0 } )$ ; confidence 0.246

220. a12018058.png ; $( S _ { n } + 1 )$ ; confidence 0.246

221. b12042014.png ; $\Psi : \otimes \rightarrow \otimes ^ { 0 p }$ ; confidence 0.245

222. t13009019.png ; $\pi X \circ \pi Y ( \alpha ) = \pi X ( \alpha )$ ; confidence 0.245

223. k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245

224. t130140116.png ; $q R$ ; confidence 0.245

225. f12024064.png ; $\mathfrak { H } \in R$ ; confidence 0.245

226. f120110118.png ; $S ^ { \prime } ( D ^ { N } ) \subset D ^ { \prime } ( R ^ { N } )$ ; confidence 0.245

227. s13049042.png ; $\nabla ( A ) : = \{ q \in N _ { k } + 1 : q > \text { pfor some } p \in A \}$ ; confidence 0.244

228. t120050116.png ; $x \in \Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.244

229. m11011042.png ; $= [ ( - 1 ) ^ { p - m - n } \prod _ { j = 1 } ^ { p } ( x \frac { d } { d x } - \alpha ; + 1 ) \prod _ { j = 1 } ^ { q } ( x \frac { d } { d x } - b _ { j } ) ]$ ; confidence 0.244

230. l1202005.png ; $A _ { 1 } , \dots , A _ { m } \subset S ^ { n }$ ; confidence 0.244

231. d11022036.png ; $y ^ { ( i ) } ( x _ { j } ) = a$ ; confidence 0.244

232. c12031052.png ; $e ^ { \operatorname { ran } } ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ E ( | l _ { a } ( f ) - Q _ { n } ( f ) | ) : f \in F _ { d } \}$ ; confidence 0.244

233. l11003074.png ; $4$ ; confidence 0.244

234. a120160100.png ; $Z ;$ ; confidence 0.244

235. i13009094.png ; $r , s , l _ { i } , t , m ; \in Z \geq 0$ ; confidence 0.243

236. r13004073.png ; $\frac { \lambda _ { 2 } ( \Omega ) } { \lambda _ { 1 } ( \Omega ) } \leq \frac { j _ { \Re / 2,1 } ^ { 2 } } { j _ { \aleph / 2 - 1,1 } ^ { 2 } }$ ; confidence 0.243

237. c02028055.png ; $L ^ { * }$ ; confidence 0.243

238. b12043041.png ; $\varepsilon x = 0 , S x = - x$ ; confidence 0.243

239. b13004018.png ; $\cap _ { \gamma = 0 } ^ { \infty } I _ { \gamma }$ ; confidence 0.243

240. s120320128.png ; $\operatorname { ev } _ { x } ( \varphi ^ { * } ( a ) ) = \operatorname { ev } _ { \varphi _ { 0 } ( x ) } ( a )$ ; confidence 0.243

241. s120340158.png ; $\alpha _ { H } ( \mathfrak { Y } ) - \alpha _ { H } ( \overline { x } )$ ; confidence 0.243

242. b13009033.png ; $\vec { D }$ ; confidence 0.243

243. s13059053.png ; $\frac { d \psi ( t ) } { d t } = \frac { q ^ { 1 / 2 } } { 2 \kappa \sqrt { \pi } } e ^ { - \langle \operatorname { ln } t / 2 \kappa ) ^ { 2 } } , q = e ^ { - 2 \kappa ^ { 2 } }$ ; confidence 0.242

244. t12002010.png ; $P = \prod _ { x \in Z } \mu _ { x }$ ; confidence 0.242

245. t13015018.png ; $0 \rightarrow K ( H ^ { 2 } ( T ) ) \frown T ( T ) \rightarrow C ( T ) \rightarrow 0$ ; confidence 0.242

246. m12016067.png ; $\hat { f n n m e } ( U ^ { \prime } )$ ; confidence 0.242

247. b120310102.png ; $\| S _ { R } ^ { \delta } f - f \| _ { \perp } \rightarrow 0$ ; confidence 0.242

248. v11005022.png ; $H ^ { 1 } ( R ^ { N } )$ ; confidence 0.242

249. f11016033.png ; $( 2 b _ { 1 } \dots b _ { t } )$ ; confidence 0.242

250. b110220192.png ; $F ^ { m } H _ { DR } ^ { 2 m - 1 } ( X / R ) \rightleftarrows H _ { B } ^ { 2 m - 1 } ( X / R , R ( m - 1 ) )$ ; confidence 0.242

251. b110220174.png ; $CH ^ { m } ( X ) \rightarrow H _ { B } ^ { 2 m } ( X _ { C } , Z ( m ) )$ ; confidence 0.242

252. l12009069.png ; $11 VI \times g$ ; confidence 0.242

253. l13006074.png ; $z _ { i } \equiv \alpha _ { i } z _ { i - 1 } + \ldots + a _ { i } z _ { i - r } ( \operatorname { mod } p )$ ; confidence 0.242

254. a12027081.png ; $r _ { P } ( \alpha , b ) = r _ { P } ( \alpha ) , r _ { P } ( b ) . ( \alpha , b ) _ { P }$ ; confidence 0.242

255. c12008099.png ; $T _ { 00 } = I _ { N }$ ; confidence 0.242

256. a12028016.png ; $V _ { z }$ ; confidence 0.242

257. c02292065.png ; $13$ ; confidence 0.242

258. c0228508.png ; $N$ ; confidence 0.242

259. m13001033.png ; $v _ { MAP } = \operatorname { arg } \operatorname { max } _ { v _ { j } \in V } \prod _ { i } P ( \alpha _ { i } | v _ { j } ) \cdot P ( v _ { j } )$ ; confidence 0.242

260. i13004023.png ; $\| \alpha \| _ { \alpha _ { p } } = \sum _ { n = 0 } ^ { \infty } 2 ^ { n / p ^ { \prime } } \{ \sum _ { k = 2 ^ { n } } ^ { 2 ^ { n + 1 } - 1 } | \Delta d _ { k } | ^ { p } \} ^ { 1 / p } < \infty$ ; confidence 0.241

261. c120080107.png ; $u _ { j } \in R ^ { m }$ ; confidence 0.241

262. a130040227.png ; $\Gamma \approx \Delta \operatorname { mod } e l s _ { K } \varphi \approx \psi \text { iff } E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.241

263. t12021078.png ; $t ( M ; x , y ) = \sum _ { S \subseteq E } ( \prod _ { e \in S } p ( e ) ) ( \prod _ { e \in S } ( 1 - p ( e ) ) )$ ; confidence 0.241

264. q12008085.png ; $E [ W ] ps$ ; confidence 0.241

265. a13004050.png ; $\mathfrak { A } = \langle A , F \rangle$ ; confidence 0.241

266. b12051092.png ; $d = d - \alpha y _ { N } - 1$ ; confidence 0.241

267. j130040137.png ; $m ^ { ( n ) }$ ; confidence 0.241

268. t12005090.png ; $\mu _ { i _ { 1 } , \ldots , i _ { s } }$ ; confidence 0.241

269. b11022054.png ; $\operatorname { ch } _ { M } : K _ { i } ( X ) \rightarrow \oplus H ^ { 2 j - i _ { M } ( X , Q ( j ) ) }$ ; confidence 0.241

270. b13021027.png ; $C _ { r } < C _ { s }$ ; confidence 0.240

271. f12024076.png ; $x ( t )$ ; confidence 0.240

272. d120230138.png ; $n r$ ; confidence 0.240

273. r13005047.png ; $C _ { A } ( g ) = \{ \alpha \in A : \alpha ^ { g } = a \} = \{ 1 \}$ ; confidence 0.240

274. c02719017.png ; $z ^ { x }$ ; confidence 0.240

275. t12005012.png ; $\Sigma ^ { i } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } d f _ { x } = i \}$ ; confidence 0.240

276. a12023063.png ; $b _ { Y , s } = \int \Omega ^ { z } z ^ { s } d v$ ; confidence 0.240

277. i13001052.png ; $\overline { d } _ { ( 1 ^ { n } ) } \preceq \overline { d } _ { ( 2,1 ^ { n - 2 } ) } \preceq \ldots \preceq \overline { d } _ { ( k , 1 ^ { n - k } ) } \preceq \ldots \preceq \overline { d } _ { ( n ) }$ ; confidence 0.240

278. a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240

279. f11016039.png ; $c _ { n } + i$ ; confidence 0.240

280. b11042028.png ; $s \in R$ ; confidence 0.240

281. i130090154.png ; $0$ ; confidence 0.240

282. b12046045.png ; $x _ { t }$ ; confidence 0.240

283. m13014070.png ; $D = ( \partial / \partial x _ { 1 } , \dots , \partial / \partial x _ { n } )$ ; confidence 0.240

284. e12009014.png ; $S ^ { \sigma } = ( \rho , J / c )$ ; confidence 0.240

285. t13013040.png ; $\Gamma = \operatorname { End } _ { \Lambda } ( T ) ^ { \circ p }$ ; confidence 0.240

286. b110220108.png ; $H _ { D } ^ { l + 1 } ( X / R , R ( i + 1 - m ) ) \rightarrow 0$ ; confidence 0.240

287. i1300107.png ; $d _ { \chi } ^ { G } ( A ) : = \sum _ { \sigma \in G } \chi ( \sigma ) \prod _ { l = 1 } ^ { n } \alpha _ { \sigma ( l ) }$ ; confidence 0.240

288. b120430173.png ; $\Delta f = 1 \bigotimes f + x \bigotimes \partial _ { q , x } f + y \otimes \partial _ { q , y } f +$ ; confidence 0.239

289. h13007016.png ; $f = ( f _ { 1 } , \dots , f _ { l } ) \in R ^ { l }$ ; confidence 0.239

290. h12007021.png ; $a \circ b$ ; confidence 0.239

291. d12026018.png ; $C [ 0,1 ]$ ; confidence 0.239

292. o130060112.png ; $l _ { E } - i \Phi ( \xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 } - \xi _ { 1 } \lambda _ { 1 } - \xi _ { 2 } \lambda _ { 2 } ) ^ { - 1 } \Phi ^ { * } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } )$ ; confidence 0.239

293. s13059032.png ; $Q _ { 2 n } ( z ) = \frac { 1 } { H _ { 2 n } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c _ { - 2 n } } & { \cdots } & { c _ { - 1 } } & { z ^ { - n } } \\ { \vdots } & { \square } & { \vdots } & { \vdots } \\ { c _ { - 1 } } & { \cdots } & { c _ { 2 n - 2 } } & { z ^ { n - 1 } } \\ { 0 } & { \cdots } & { c _ { 2 n - 1 } } & { z ^ { n } e n d } \end{array} \right|$ ; confidence 0.239

294. a130240527.png ; $( n$ ; confidence 0.239

295. q12007016.png ; $H ^ { \otimes 3 }$ ; confidence 0.239

296. q1200205.png ; $| T _ { i _ { 1 } , \ldots , i _ { k } } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.239

297. l120120207.png ; $\alpha _ { 0 } : \cup _ { \mathfrak { p } ^ { \prime } \in S ^ { \prime } } G ( K _ { \mathfrak { p } ^ { \prime } } ) \rightarrow G$ ; confidence 0.239

298. a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239

299. d03386039.png ; $I _ { A }$ ; confidence 0.239

300. g12007035.png ; $i ^ { * }$ ; confidence 0.238

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/70. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/70&oldid=44558