Conditional mathematical expectation
conditional expectation, of a random variable
A function of an elementary event that characterizes the random variable with respect to a certain -algebra. Let (\Omega, \mathcal{A}, \mathsf{P}) be a probability space, let X be a real-valued random variable with finite expectation defined on this space and let \mathfrak{B} be a \sigma-algebra, \mathfrak{B}\subseteq\mathcal{A}. The conditional expectation of X with respect to \mathfrak{B} is understood to be a random variable \mathsf{E}(X\, |\, \mathfrak{B}), measurable with respect to \mathfrak{B} and such that
\begin{equation}\tag{*} \int\limits_BX\mathsf{P}(d\,\omega)=\int\limits_B\mathsf{E}(X\, |\, \mathfrak{B})\mathsf{P}(d\,\omega) \end{equation}
for each B\in\mathfrak{B}. If the expectation of X is infinite (but defined), i.e. only one of the numbers \mathsf{E}X^+=\mathsf{E}\max(0, X) and \mathsf{E}X^-=-\mathsf{E}\min(0, X) is finite, then the definition of the conditional expectation by means of (*) still makes sense but \mathsf{E}(X\, |\, \mathfrak{B}) may assume infinite values.
The conditional expectation is uniquely defined up to equivalence. In contrast to the mathematical expectation, which is a number, the conditional expectation represents a function (a random variable).
The properties of the conditional expectation are similar to those of the expectation:
1) \mathsf{E}(X_1\, |\, \mathfrak{B})\leq\mathsf{E}(X_2\, |\, \mathfrak{B}) if, almost certainly, X_1(\omega)\leq X_2(\omega);
2) \mathsf{E}(c\, |\, \mathfrak{B})=c for every real c;
3) \mathsf{E}(\alpha X_1+\beta X_2\, |\, \mathfrak{B})=\alpha\,\mathsf{E}(X_1\, |\, \mathfrak{B})+\beta\,\mathsf{E}(X_2\, |\, \mathfrak{B}) for arbitrary real \alpha and \beta;
4) |\mathsf{E}(X\, |\, \mathfrak{B})|\leq\mathsf{E}(|X|\, |\, \mathfrak{B});
5) g(\mathsf{E}(X\, |\, \mathfrak{B}))\leq\mathsf{E}(g(X)\, |\, \mathfrak{B}) for every convex function g. Furthermore, the following properties specific to the conditional expectation hold:
6) If \mathfrak{B}=\{\emptyset, \Omega\} is the trivial \sigma-algebra, then \mathsf{E}(X\, |\, \mathfrak{B})=\mathsf{E}X;
7) \mathsf{E}(X\, |\, \mathcal{A})=X;
8) \mathsf{E}(\mathsf{E}(X\, |\, \mathfrak{B}))=\mathsf{E}X;
9) if X is independent of \mathfrak{B}, then \mathsf{E}(X\, |\, \mathfrak{B})=\mathsf{E}X;
10) if Y is measurable with respect to \mathfrak{B}, then \mathsf{E}(XY\, |\, \mathfrak{B})=Y\mathsf{E}(X\, |\, \mathfrak{B}).
There is a theorem on convergence under the integral sign of conditional mathematical expectation: If X_1, X_2, \dots is a sequence of random variables, |X_n|\leq Y, n=1,2,\dots \mathsf{E}Y<\infty and X_n\rightarrow X almost certainly, then, almost certainly, \mathsf{E}(X_n\, |\, \mathfrak{B})\rightarrow\mathsf{E}(X\, |\, \mathfrak{B}).
The conditional expectation of a random variable X with respect to a random variable Y is defined as the conditional expectation of X relative to the \sigma-algebra generated by Y.
A particular case of the conditional expectation is the conditional probability.
References
[1] | A.N. Kolmogorov, "Foundations of the theory of probability" , Chelsea, reprint (1950) (Translated from Russian) |
[2] | Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian) |
[3] | J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970) |
[4] | M. Loève, "Probability theory" , Princeton Univ. Press (1963) |
Comments
Almost-certain convergence is also called almost-sure convergence in the West.
References
[a1] | R.B. Ash, "Real analysis and probability" , Acad. Press (1972) |
[a2] | J. Neveu, "Discrete-parameter martingales" , North-Holland (1975) (Translated from French) |
Conditional mathematical expectation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conditional_mathematical_expectation&oldid=41628