Namespaces
Variants
Actions

User:Richard Pinch/sandbox-5

From Encyclopedia of Mathematics
< User:Richard Pinch
Revision as of 17:10, 30 April 2016 by Richard Pinch (talk | contribs) (Start article: Möbius inversion for arithmetic functions, using text from Möbius series)
Jump to: navigation, search

Gray map

A map from $\mathbf{Z}_4$ to $\mathbf{F}_2^2$, extended in the obvious way to $\mathbf{Z}_4^n$ and $\mathbf{F}_2^n$ which maps Lee distance to Hamming distance. Explicitly, $$ 0 \mapsto 00 \ ,\ \ 1 \mapsto 01 \ ,\ \ 2 \mapsto 11 \ ,\ \ 3 \mapsto 10 \ . $$

The map instantiates a Gray code in dimension 2.

Möbius inversion for arithmetic functions

The original form of Möbius inversion developed by F. Möbius for arithmetic functions.

Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: $$ F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . $$

Another inversion formula: If $P(n)$ is a totally multiplicative function for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then $$ g(x) = \sum_{n \le x} P(n) f(x/n) $$ implies $$ f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . $$

All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under Dirichlet convolution, cf. (the editorial comments to) Möbius function and Multiplicative arithmetic function.

References

[1] A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" J. Reine Angew. Math. , 9 (1832) pp. 105–123
[2] I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)
[3] K. Prachar, "Primzahlverteilung" , Springer (1957)
How to Cite This Entry:
Richard Pinch/sandbox-5. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-5&oldid=38741