Namespaces
Variants
Actions

Separable space

From Encyclopedia of Mathematics
Revision as of 19:07, 12 April 2014 by Ivan (talk | contribs) (TeX)
Jump to: navigation, search

A topological space containing a countable everywhere-dense set.


Comments

Thus, a space $X$ is separable if and only if its density $d(X)\leq\aleph_0$; cf. Cardinal characteristic.

A metrizable space is separable if and only if it satisfies the second axiom of countability.

References

[1] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) pp. 43ff (Translated from Russian)
How to Cite This Entry:
Separable space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Separable_space&oldid=31649
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article