Namespaces
Variants
Actions

Diagonal ring

From Encyclopedia of Mathematics
Revision as of 12:33, 12 April 2014 by Ivan (talk | contribs) (TeX)
Jump to: navigation, search

of a closed symmetric algebra $R$ of bounded linear operators on a Hilbert space $H$

A commutative symmetric Banach algebra $E$ of operators on $H$ such that $(R\cup E)'=E$. Diagonal algebras are employed in decomposing operator algebras into irreducible ones.

References

[1] M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)


Comments

In the article above, $(R\cup E)'$ denotes the commutant of the minimal closed symmetric algebra containing $R$ and $E$.

In Western terminology, a diagonal ring is called a diagonal algebra. The notion is due to T. Tomita [a1]. "Diagonal ring" only appears in the first edition of [1] and in the translations based on this edition. In the foreword to the second ( first revised) American edition (see [a2]), M.A. Naimark noted that "the theory of Tomita is valid only under the additional assumptions of separability type" and that he therefore preferred to give a discussion "which is closer to the initial simpler theory of von Neumann for the separable case" . For a different notion of diagonal algebra see, e.g., [a3].

References

[a1] T. Tomita, "Representations of operator algebras" Math. J. Okayama Univ. , 3 (1954) pp. 147–173
[a2] M.A. Naimark, "Normed algebras" , Wolters-Noordhoff (1972) (3rd American ed.)
[a3] M. Takesaki, "Theory of operator algebras" , 1 , Springer (1979) pp. 259, 273
How to Cite This Entry:
Diagonal ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Diagonal_ring&oldid=31627
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article