Namespaces
Variants
Actions

Evaluation

From Encyclopedia of Mathematics
Revision as of 14:35, 21 April 2013 by Joachim Draeger (talk | contribs) (Short remark concerning designation)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

2020 Mathematics Subject Classification: Primary: 68P05 [MSN][ZBL]

An interpretation $v^\ast\colon T(\Sigma,\emptyset)\longrightarrow A$ only defined on the ground terms $t\in T(\Sigma)$ of a signature $\Sigma$ is called an evaluation. Since interpretations are $\Sigma$-algebra-morphisms, evaluations are $\Sigma$-algebra-morphisms as well. Furthermore, evaluations are uniquely determined, i.e. there exists exactly one mapping $e\colon T(\Sigma)\longrightarrow A$. This specific property has remarkable consequences. Consider for example a $\Sigma$-algebra-morphism $f\colon A\longrightarrow B$ between $\Sigma$-algebras $A$ and $B$. Then the equality $e_A=f\circ e_B$ holds for evaluations $e_A$ and $e_B$. In effect, each assignement can be extended to a functor between the term algebra $T(\Sigma)$ and $A$.

For reasons of simplicity, the application of the (uniquely determined) evaluation $e\colon T(\Sigma)\longrightarrow A$ to a term $t\in T(\Sigma)$ is often designated as $t^A := e(t)$.

References

[EM85] H. Ehrig, B. Mahr: "Fundamentals of Algebraic Specifications", Volume 1, Springer 1985
How to Cite This Entry:
Evaluation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Evaluation&oldid=29687