Namespaces
Variants
Actions

Lebesgue integral

From Encyclopedia of Mathematics
Revision as of 17:26, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The most important generalization of the concept of an integral. Let be a space with a non-negative complete countably-additive measure (cf. Countably-additive set function; Measure space), where . A simple function is a measurable function that takes at most a countable set of values: , for , if , . A simple function is said to be summable if the series

converges absolutely (cf. Absolutely convergent series); the sum of this series is the Lebesgue integral

A function is summable on , , if there is a sequence of simple summable functions uniformly convergent (cf. Uniform convergence) to on a set of full measure, and if the limit

is finite. The number is the Lebesgue integral

This is well-defined: the limit exists and does not depend on the choice of the sequence . If , then is a measurable almost-everywhere finite function on . The Lebesgue integral is a linear non-negative functional on with the following properties:

1) if and if

then and

2) if , then and

3) if , and is measurable, then and

4) if and is measurable, then and

In the case when and , , the Lebesgue integral is defined as

under the condition that this limit exists and is finite for any sequence such that , , . In this case the properties 1), 2), 3) are preserved, but condition 4) is violated.

For the transition to the limit under the Lebesgue integral sign see Lebesgue theorem.

If is a measurable set in , then the Lebesgue integral

is defined either as above, by replacing by , or as

where is the characteristic function of ; these definitions are equivalent. If , then for any measurable . If

if is measurable for every , if

and if , then

Conversely, if under these conditions on one has for every and if

then and the previous equality is true (-additivity of the Lebesgue integral).

The function of sets given by

is absolutely continuous with respect to (cf. Absolute continuity); if , then is a non-negative measure that is absolutely continuous with respect to . The converse assertion is the Radon–Nikodým theorem.

For functions the name "Lebesgue integral" is applied to the corresponding functional if the measure is the Lebesgue measure; here, the set of summable functions is denoted simply by , and the integral by

For other measures this functional is called a Lebesgue–Stieltjes integral.

If , and if is a non-decreasing absolutely continuous function, then

If , and if is monotone on , then and there is a point such that

(the second mean-value theorem).

In 1902 H. Lebesgue gave (see [1]) a definition of the integral for and measure equal to the Lebesgue measure. He constructed simple functions that uniformly approximate almost-everywhere on a set of finite measure a measurable non-negative function , and proved the existence of a common limit (finite or infinite) of the integrals of these simple functions as they tend to . The Lebesgue integral is a basis for various generalizations of the concept of an integral. As N.N. Luzin remarked [2], property 2), called absolute integrability, distinguishes the Lebesgue integral for from all possible generalized integrals.

References

[1] H. Lebesgue, "Leçons sur l'intégration et la récherche des fonctions primitives" , Gauthier-Villars (1928)
[2] N.N. Luzin, "The integral and trigonometric series" , Moscow-Leningrad (1915) (In Russian) (Thesis; also: Collected Works, Vol. 1, Moscow, 1953, pp. 48–212)
[3] A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian)


Comments

For other generalizations of the notion of an integral see -integral; Bochner integral; Boks integral; Burkill integral; Daniell integral; Darboux sum; Denjoy integral; Kolmogorov integral; Perron integral; Perron–Stieltjes integral; Pettis integral; Radon integral; Stieltjes integral; Strong integral; Wiener integral. See also, of course, Riemann integral. See also Double integral; Improper integral; Fubini theorem (on changing the order of integration).

References

[a1] P.R. Halmos, "Measure theory" , v. Nostrand (1950)
[a2] I.N. Pesin, "Classical and modern integration theories" , Acad. Press (1970) (Translated from Russian)
[a3] S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)
[a4] H.L. Royden, "Real analysis" , Macmillan (1968)
[a5] W. Rudin, "Real and complex analysis" , McGraw-Hill (1978) pp. 24
[a6] E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)
How to Cite This Entry:
Lebesgue integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_integral&oldid=18585
This article was adapted from an original article by I.A. Vinogradova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article