Namespaces
Variants
Actions

Harmonic majorant

From Encyclopedia of Mathematics
Revision as of 17:11, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

least harmonic majorant of a family

The lower envelope of the family of all superharmonic majorants of the family of subharmonic functions on an open set of a Euclidean space , , i.e.

The least harmonic majorant is either a harmonic function or on . If the family consists of a single function which is subharmonic on a larger set , the concept of the best harmonic majorant — the solution of the generalized Dirichlet problem for with value on the boundary — may be employed. Always , and the following formula [1] is valid:

where is the measure which is associated with , , and is the (generalized) Green function of the Dirichlet problem for . The best and the least harmonic majorants coincide if and only if the set of all irregular points (cf. Irregular boundary point) of has -measure zero.

Correspondingly, if is a family of superharmonic functions on , the greatest harmonic minorant of the family is defined as the upper envelope of the family of all subharmonic minorants of ; here is the least harmonic majorant for .

The problem of harmonic majorants may also be posed in terms of the Cauchy problem for the Laplace equation. See Harmonic function.

References

[1] O. Frostman, "Potentiel d'equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions" Mett. Lunds Univ. Mat. Sem. , 3 (1935) pp. 1–118
[2] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)


Comments

In axiomatic potential theory (cf. Potential theory, abstract) the equality of the best and the least harmonic majorant is connected to the domination principle (cf. Domination), see [a1], Chapt. 9.

References

[a1] C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972)
How to Cite This Entry:
Harmonic majorant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonic_majorant&oldid=15227
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article