Namespaces
Variants
Actions

*-Autonomous category

From Encyclopedia of Mathematics
Revision as of 16:58, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Let be a symmetric closed monoidal category (cf. also Category). A functor is a duality functor if there exists an isomorphism , natural in and , such that for all objects the following diagram commutes:

where in the bottom arrow .

A category is -autonomous if it is a symmetric monoidal closed category with a given duality functor.

It so happens that -autonomous categories have real-life applications: they are models of (at least the finite part of) linear logic [a2] and have uses in modelling processes.

An example of a -autonomous category is the category of sets and relations; duality is given by . In fact, .

From a given symmetric monoidal closed category and an object in it (that serves as a dualizing object) one can construct a -autonomous category (the so-called Chu construction, [a3]). It can be viewed as a kind of generalized topology.

References

[a1] M. Barr, "-Autonomous categories" , Lecture Notes in Mathematics , 752 , Springer (1979)
[a2] M. Barr, C. Wells, "Category theory for computing science" , Publ. CRM (1990)
[a3] P.-H. Chu, "Constructing -autonomous categories" M. Barr (ed.) , -Autonomous categories , Lecture Notes in Mathematics , 752 , Springer (1979) pp. Appendix
How to Cite This Entry:
*-Autonomous category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=*-Autonomous_category&oldid=50417
This article was adapted from an original article by Michel Eytan (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article