Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/16

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 08:36, 6 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 16 out of 19 with 300 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. g043020169.png ; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465

2. a13001015.png ; $S ^ { * } = S$ ; confidence 0.463

3. r0824503.png ; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463

4. w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463

5. a13013017.png ; $P$ ; confidence 0.462

6. b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462

7. c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462

8. i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462

9. a110040249.png ; $H _ { k } + 1 , \ldots , H _ { k } + m$ ; confidence 0.462

10. a11030020.png ; $r$ ; confidence 0.461

11. d03207031.png ; $2 \pi \alpha$ ; confidence 0.461

12. l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461

13. l059490155.png ; $| \epsilon | < \epsilon$ ; confidence 0.461

14. a130040285.png ; $\$ 4$ ; confidence 0.460

15. a130050170.png ; $K ( n )$ ; confidence 0.460

16. a0102008.png ; $\square _ { R } \Omega$ ; confidence 0.460

17. p07101037.png ; $p _ { i }$ ; confidence 0.459

18. y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459

19. a130040346.png ; $= \{ \langle \alpha , b \rangle \in A ^ { 2 } : \epsilon ^ { A } ( \alpha , b ) \in \text { Ffor all } \epsilon ( x , y ) \in E ( x , y ) \}$ ; confidence 0.459

20. a01021081.png ; $\omega ; 0$ ; confidence 0.458

21. a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458

22. a13024029.png ; $1$ ; confidence 0.458

23. p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458

24. a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456

25. p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456

26. a01024034.png ; $w ^ { 2 } = a 0 z + a 1$ ; confidence 0.455

27. a13004026.png ; $\Gamma ^ { \prime } \operatorname { tg } \varphi$ ; confidence 0.455

28. a120050110.png ; $M$ ; confidence 0.455

29. i0524504.png ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455

30. l12003069.png ; $T _ { F }$ ; confidence 0.455

31. a11002060.png ; $( q ^ { d + 1 } ( 1 + \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } ) , q ^ { d } \cdot \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } , q ^ { d } \cdot \frac { q ^ { d } - 1 } { q ^ { - 1 } } )$ ; confidence 0.455

32. a01012047.png ; $W _ { 1 }$ ; confidence 0.455

33. a01071011.png ; $( A )$ ; confidence 0.454

34. a11004025.png ; $L$ ; confidence 0.453

35. a01021026.png ; $A _ { 1 } , B _ { 1 } , \dots , A , B _ { g }$ ; confidence 0.453

36. a130040553.png ; $G$ ; confidence 0.453

37. a110010204.png ; $I - ( \tilde { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.452

38. e03517077.png ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452

39. a130040212.png ; $^ { * } S _ { IP }$ ; confidence 0.452

40. a110010197.png ; $1 \leq \| T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 } \delta A \| \leq$ ; confidence 0.451

41. b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451

42. a130060151.png ; $P _ { F } ^ { \# } ( n )$ ; confidence 0.450

43. a01012064.png ; $n = 0,1 , \dots$ ; confidence 0.450

44. a110420133.png ; $i$ ; confidence 0.450

45. a01294080.png ; $F _ { b }$ ; confidence 0.450

46. s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450

47. a11017025.png ; $f$ ; confidence 0.450

48. c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449

49. o130060187.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449

50. a1200807.png ; $j ( x ) = \alpha _ { j , i } ( x )$ ; confidence 0.448

51. a01060042.png ; $Y _ { z }$ ; confidence 0.447

52. a01012054.png ; $\frac { \operatorname { lim } } { k \rightarrow \infty } \frac { n _ { k } } { | \lambda _ { k } | } = 0$ ; confidence 0.447

53. c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447

54. h04754045.png ; $\Omega \frac { p } { x }$ ; confidence 0.447

55. s0908209.png ; $X ^ { * }$ ; confidence 0.447

56. t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447

57. a11004017.png ; $\phi _ { L }$ ; confidence 0.446

58. a110040246.png ; $C ^ { M }$ ; confidence 0.446

59. a130240539.png ; $T _ { 1 }$ ; confidence 0.446

60. a11037054.png ; $P \{ X _ { k } ^ { + } = 0 \} = 1$ ; confidence 0.446

61. a11001062.png ; $i$ ; confidence 0.446

62. a11037022.png ; $t \rightarrow S$ ; confidence 0.445

63. b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445

64. c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445

65. f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445

66. s086490118.png ; $d ^ { \prime }$ ; confidence 0.445

67. c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444

68. a110040214.png ; $K _ { A }$ ; confidence 0.444

69. a130040195.png ; $d ^ { * } S _ { D }$ ; confidence 0.443

70. a130240229.png ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443

71. b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443

72. c020540105.png ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443

73. c022780129.png ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443

74. c02518080.png ; $f _ { x } ^ { - 1 }$ ; confidence 0.443

75. q07631095.png ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443

76. a130040351.png ; $x \leftrightarrow T$ ; confidence 0.441

77. a13029066.png ; $Y$ ; confidence 0.441

78. a01052055.png ; $( a ( h ) ) ^ { h - q }$ ; confidence 0.441

79. a130040746.png ; $P \cup R$ ; confidence 0.441

80. a11004095.png ; $d > 1$ ; confidence 0.441

81. a11001037.png ; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440

82. r08256041.png ; $300$ ; confidence 0.440

83. s085580244.png ; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440

84. t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440

85. a1101509.png ; $\alpha , b , \ldots$ ; confidence 0.439

86. a11030032.png ; $e ^ { x } \alpha + 1$ ; confidence 0.439

87. a130040671.png ; $\{ X , v \}$ ; confidence 0.439

88. a01022081.png ; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439

89. a1300205.png ; $X \subset R ^ { n }$ ; confidence 0.439

90. a01021057.png ; $( \frac { a - x } { z ^ { x } } + \ldots + \frac { a - 2 } { z ^ { 2 } } + f ( z ) ) d z$ ; confidence 0.439

91. a01022051.png ; $U W ^ { T } = 0$ ; confidence 0.439

92. a010210107.png ; $k , b + k$ ; confidence 0.439

93. a130040344.png ; $F \in Fi _ { D } A$ ; confidence 0.438

94. a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438

95. f13010016.png ; $u \in C ^ { G }$ ; confidence 0.438

96. w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438

97. a01055026.png ; $S ^ { x - 1 } = O ( n ) / O ( n - 1 )$ ; confidence 0.438

98. a01058010.png ; $\chi _ { k + 1 } ( \int _ { x _ { 0 } } ^ { x _ { n } } \Omega ( x , t ) y ^ { ( k + 2 ) } ( t ) d t ) h ^ { k + 1 } + O ( h ^ { k + 2 } )$ ; confidence 0.437

99. a110680195.png ; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437

100. c02162068.png ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437

101. f04203082.png ; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437

102. a11001094.png ; $\overline { X } \rightarrow X$ ; confidence 0.437

103. a13024030.png ; $n \times p$ ; confidence 0.435

104. d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435

105. h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435

106. a0102208.png ; $w _ { \nu } = ( \omega _ { 1 } \nu , \ldots , \omega _ { p } \nu ) , \quad \nu = 1 , \ldots , 2 p$ ; confidence 0.435

107. a130060143.png ; $\pi$ ; confidence 0.434

108. a13013098.png ; $\pi$ ; confidence 0.434

109. i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434

110. a01018040.png ; $s = s 1$ ; confidence 0.434

111. a0101204.png ; $\{ A _ { N } \}$ ; confidence 0.433

112. a01029080.png ; $\pi x : X _ { \delta } \rightarrow X$ ; confidence 0.433

113. b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433

114. q12003027.png ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433

115. p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432

116. p0738407.png ; $A \supset B$ ; confidence 0.432

117. r07737019.png ; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432

118. a110220106.png ; $i$ ; confidence 0.432

119. a12006036.png ; $\left\{ \begin{array} { l l } { \frac { d u } { d t } + A ( t ) u = f ( t ) , } & { t \in [ 0 , T ] } \\ { u ( 0 ) = u _ { 0 } } \end{array} \right.$ ; confidence 0.432

120. a130040788.png ; $g g ^ { \prime } : B \rightarrow C$ ; confidence 0.431

121. a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431

122. a130040453.png ; $\{ A , F \rangle \in K$ ; confidence 0.431

123. a1202206.png ; $\varepsilon \in X$ ; confidence 0.430

124. e0358008.png ; $\nu ( n ) = \alpha$ ; confidence 0.430

125. r08256016.png ; $1$ ; confidence 0.430

126. a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430

127. a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429

128. d03353095.png ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429

129. a01071026.png ; $( A _ { i } )$ ; confidence 0.428

130. a120050113.png ; $U ( . . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428

131. a11004090.png ; $d > 5$ ; confidence 0.427

132. b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427

133. a0102405.png ; $\alpha ; ( z )$ ; confidence 0.427

134. w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426

135. a11016026.png ; $x _ { k + 1 } = D ^ { - 1 } ( b - ( L + U ) x _ { k } )$ ; confidence 0.426

136. a130040233.png ; $E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.426

137. a11037019.png ; $s \in R _ { + }$ ; confidence 0.425

138. a01084029.png ; $l \mapsto ( . l )$ ; confidence 0.425

139. a12023068.png ; $c _ { q }$ ; confidence 0.425

140. s09120056.png ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425

141. a01233050.png ; $x <$ ; confidence 0.424

142. c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424

143. a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424

144. a01024077.png ; $\int _ { P _ { 1 } } ^ { P _ { 2 } } \omega _ { P _ { 3 } P _ { 4 } } = \int _ { P _ { 3 } } ^ { P _ { 4 } } \omega _ { P _ { 1 } P _ { 2 } }$ ; confidence 0.423

145. c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422

146. o07024014.png ; $6 \pi \eta \alpha$ ; confidence 0.422

147. a1101607.png ; $a _ { i }$ ; confidence 0.422

148. a1102205.png ; $X _ { t }$ ; confidence 0.422

149. a110040240.png ; $\varphi _ { L } : A \hookrightarrow P ^ { S }$ ; confidence 0.422

150. b110100377.png ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421

151. m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421

152. a01058030.png ; $k = 1 , v _ { 1 } = 1 / 2 , v 0 = 1 / 2$ ; confidence 0.421

153. a110010267.png ; $\hat { \lambda } = \lambda + \epsilon ^ { 1 / m } \lambda _ { 1 } + \epsilon ^ { 2 / m } \lambda _ { 2 } +$ ; confidence 0.420

154. b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420

155. a01020064.png ; $T : \mathfrak { A } \rightarrow \mathfrak { A } / \mathfrak { A } _ { 1 }$ ; confidence 0.420

156. a13006018.png ; $N ( n )$ ; confidence 0.419

157. a01018018.png ; $Z 1,22$ ; confidence 0.419

158. b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419

159. p075700100.png ; $q ^ { 1 }$ ; confidence 0.419

160. a01018063.png ; $S _ { 1 } , \ldots , S _ { k }$ ; confidence 0.418

161. a110010224.png ; $E _ { i } = x ^ { i } y ^ { i }$ ; confidence 0.418

162. t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418

163. f130290181.png ; $LOC$ ; confidence 0.417

164. a130040636.png ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417

165. a13006086.png ; $\overline { H _ { 1 } } \cdot \overline { H _ { 2 } } = \overline { H _ { 1 } \cup _ { d } H _ { 2 } }$ ; confidence 0.417

166. a130040434.png ; $F _ { 0 }$ ; confidence 0.417

167. a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416

168. g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416

169. n06728058.png ; $\pi / \rho$ ; confidence 0.416

170. a13004054.png ; $F \subset A$ ; confidence 0.416

171. a110040242.png ; $Q \in H ^ { 0 } ( P ^ { 8 } , I _ { A / P ^ { 8 } } ( 2 ) )$ ; confidence 0.415

172. a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415

173. b11052027.png ; $x \in G _ { n }$ ; confidence 0.415

174. a130240152.png ; $X \beta$ ; confidence 0.414

175. a11006029.png ; $B _ { j } \in B$ ; confidence 0.414

176. c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414

177. p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414

178. a130040527.png ; $\{ A , C \}$ ; confidence 0.413

179. c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413

180. m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413

181. o13005095.png ; $v \in G$ ; confidence 0.413

182. w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413

183. a130050178.png ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413

184. a12006040.png ; $40$ ; confidence 0.413

185. a11016028.png ; $x _ { k + 1 } = ( D + L ) ^ { - 1 } ( b - U _ { x _ { k } } )$ ; confidence 0.412

186. a1100708.png ; $\langle \sum _ { k = 1 } ^ { n } \| T x _ { k } \| ^ { p } ) ^ { 1 / p } \leq$ ; confidence 0.412

187. a01029078.png ; $( X _ { \delta } , \pi X )$ ; confidence 0.412

188. a01043024.png ; $q i$ ; confidence 0.412

189. f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412

190. h04637024.png ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412

191. a01021030.png ; $A _ { j } = \int _ { a _ { j } } \omega , \quad B _ { j } = \int _ { b _ { j } } \omega , \quad j = 1 , \ldots , g$ ; confidence 0.412

192. a11017045.png ; $[ T ] n = - \rho U [ a ]$ ; confidence 0.412

193. a110040218.png ; $I _ { A / P } ^ { 7 }$ ; confidence 0.411

194. g043810261.png ; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411

195. a01070011.png ; $r = \{ \alpha \in A : ( \alpha , 0 ) \in r \}$ ; confidence 0.410

196. f03847049.png ; $\tau _ { k + 1 } = t$ ; confidence 0.410

197. a130040659.png ; $^ { * } L _ { D }$ ; confidence 0.409

198. o13008026.png ; $C _ { \psi }$ ; confidence 0.409

199. b12031064.png ; $\tau ^ { n }$ ; confidence 0.408

200. a110040120.png ; $( F _ { 1 } . F _ { 2 } ) = d$ ; confidence 0.408

201. a012410141.png ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407

202. a110040225.png ; $\hat { K } _ { A }$ ; confidence 0.407

203. c02064012.png ; $\mu = \beta \nu$ ; confidence 0.406

204. p072850150.png ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406

205. a110010213.png ; $\delta \lambda _ { i } \approx \frac { y ^ { i } ^ { * } \delta A x ^ { i } } { y ^ { i ^ { * } } x ^ { i } }$ ; confidence 0.406

206. a0106706.png ; $\overline { v }$ ; confidence 0.405

207. g0434807.png ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405

208. l11014014.png ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405

209. a130040649.png ; $57$ ; confidence 0.404

210. a0105803.png ; $y _ { n + 1 } = y _ { n } + h \sum _ { \lambda = 0 } ^ { k } u _ { - \lambda } f ( x _ { n - \lambda } , y _ { n - \lambda } )$ ; confidence 0.404

211. s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404

212. a1103209.png ; $i = 2 , \ldots , s$ ; confidence 0.404

213. a12005069.png ; $0 , T$ ; confidence 0.403

214. a01070012.png ; $r = K e r r ^ { - 1 }$ ; confidence 0.403

215. a130240452.png ; $P$ ; confidence 0.403

216. c020740324.png ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403

217. c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402

218. a11002050.png ; $21$ ; confidence 0.401

219. a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401

220. i05226072.png ; $Z \in G$ ; confidence 0.401

221. a130040116.png ; $2$ ; confidence 0.401

222. a0102403.png ; $Z , W$ ; confidence 0.401

223. p07283021.png ; $\epsilon _ { i j } ^ { k }$ ; confidence 0.400

224. a12012084.png ; $c _ { t } ^ { \prime } \geq c _ { t }$ ; confidence 0.400

225. a01018031.png ; $A _ { x } = \alpha _ { 1 } + \ldots + \alpha _ { x }$ ; confidence 0.399

226. a11033032.png ; $\hat { N }$ ; confidence 0.399

227. l060090100.png ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399

228. a13004099.png ; $\psi \in S$ ; confidence 0.398

229. a0104209.png ; $\{ X _ { n } \}$ ; confidence 0.398

230. a1201304.png ; $E _ { \theta } [ H ( \theta , X ) ] = 0 , \quad \text { if } \theta = \theta ^ { * }$ ; confidence 0.398

231. a11028035.png ; $( - 1 ) ^ { x } \chi ( G ; - k )$ ; confidence 0.398

232. i0521507.png ; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397

233. a11042079.png ; $25$ ; confidence 0.396

234. a12022033.png ; $5$ ; confidence 0.396

235. b12050014.png ; $M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$ ; confidence 0.396

236. r081560116.png ; $R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$ ; confidence 0.396

237. a01021070.png ; $P _ { 2 }$ ; confidence 0.396

238. c02718064.png ; $H ( K )$ ; confidence 0.395

239. d030020144.png ; $\operatorname { gr } D _ { X }$ ; confidence 0.395

240. e11008028.png ; $P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$ ; confidence 0.394

241. a1103408.png ; $\theta _ { i }$ ; confidence 0.393

242. a01012057.png ; $k = 0,1 , \ldots ,$ ; confidence 0.393

243. a130040281.png ; $X \rightarrow y$ ; confidence 0.392

244. a12007019.png ; $| \frac { \partial U ( t , s ) } { \partial t } | | \leq \frac { C } { t - s } , \quad s , t \in [ 0 , T ]$ ; confidence 0.392

245. t0935701.png ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391

246. a110010194.png ; $\hat { \lambda } I - A - \delta A = ( \hat { \lambda } I - A ) [ I - ( \hat { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.391

247. a130040181.png ; $\alpha \in G$ ; confidence 0.390

248. a11001086.png ; $\| \delta x \| = \| A ^ { - 1 } B ^ { - 1 } B N \| =$ ; confidence 0.390

249. a11001061.png ; $| \delta b | \leq \epsilon | b |$ ; confidence 0.389

250. c022780377.png ; $1 B S G$ ; confidence 0.389

251. a130240508.png ; $E ( Z _ { 13 } ) = 0$ ; confidence 0.388

252. d03233041.png ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388

253. a1200601.png ; $\left. \begin{array} { c } { \frac { \partial u } { \partial t } + \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u = f ( x , t ) } \\ { ( x , t ) \in \Omega \times [ 0 , T ] } \\ { u ( x , 0 ) = u _ { 0 } ( x ) , \quad x \in \Omega } \end{array} \right.$ ; confidence 0.387

254. a11006018.png ; $P _ { B }$ ; confidence 0.385

255. a1106409.png ; $S U N$ ; confidence 0.385

256. t13004015.png ; $( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$ ; confidence 0.385

257. a12010054.png ; $X ^ { * }$ ; confidence 0.384

258. a13024066.png ; $y _ { i j k } = \mu + \alpha _ { i } + \beta _ { j } + \gamma _ { i j } + e _ { j k }$ ; confidence 0.384

259. b11099015.png ; $P _ { \alpha }$ ; confidence 0.384

260. f04132023.png ; $v _ { 0 } ^ { k }$ ; confidence 0.384

261. a0105807.png ; $y _ { n + 1 } ^ { ( i + 1 ) } = y _ { n } + h \sum _ { \lambda = 0 } ^ { k - 1 } v _ { - \lambda } f ( x _ { n - \lambda } , y _ { n - \lambda } ) + h v _ { 1 } f ( x _ { n + 1 } , y _ { n + 1 } ^ { ( i ) } )$ ; confidence 0.383

262. a11032036.png ; $n _ { S }$ ; confidence 0.383

263. c1202805.png ; $X *$ ; confidence 0.383

264. a0100204.png ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382

265. a13013023.png ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382

266. i05097047.png ; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382

267. a110010222.png ; $E$ ; confidence 0.382

268. a110010196.png ; $( \hat { \lambda } I - A ) ^ { - 1 } = T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 }$ ; confidence 0.382

269. a01046064.png ; $x , h \in X$ ; confidence 0.382

270. a130040405.png ; $P _ { U } K$ ; confidence 0.381

271. c02592019.png ; $631$ ; confidence 0.381

272. a01012029.png ; $| \lambda _ { X } | \leq ( n + 1 ) ^ { \alpha - 1 }$ ; confidence 0.381

273. a11015010.png ; $F ( . | S _ { i } )$ ; confidence 0.381

274. a01033016.png ; $\beta _ { y }$ ; confidence 0.380

275. a01021055.png ; $a - 1$ ; confidence 0.380

276. a1301307.png ; $Q$ ; confidence 0.380

277. s08778021.png ; $w ^ { \prime }$ ; confidence 0.380

278. a130040213.png ; $^ { * } S \text { s } 5$ ; confidence 0.380

279. a01020088.png ; $\phi \gamma$ ; confidence 0.380

280. a130070106.png ; $d | n$ ; confidence 0.379

281. a12010035.png ; $X = R$ ; confidence 0.378

282. t120010108.png ; $Sp ( 0 )$ ; confidence 0.378

283. v09635060.png ; $\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$ ; confidence 0.378

284. a11035011.png ; $n$ ; confidence 0.377

285. a130240236.png ; $n - r$ ; confidence 0.377

286. a12015019.png ; $( g )$ ; confidence 0.376

287. a110010246.png ; $( A - \hat { \lambda } I ) x ^ { ( i + 1 ) } = x ^ { ( i ) } , \quad i = 1 , \ldots , n$ ; confidence 0.376

288. p110120321.png ; $4 x$ ; confidence 0.375

289. a11035028.png ; $\lambda ( x ) \phi _ { \lambda } ( y )$ ; confidence 0.374

290. a1301305.png ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374

291. h0471603.png ; $H ( z ) = \sum _ { i = 1 } ^ { n } \sum _ { j = 1 } ^ { n } a _ { i j } z _ { i } z _ { j }$ ; confidence 0.374

292. k055850103.png ; $D _ { \alpha }$ ; confidence 0.374

293. a13006032.png ; $\pi _ { K } ( x ) = \sum _ { n \leq x } P _ { K } ( n ) \sim \frac { x } { \operatorname { log } x } \operatorname { asx } \rightarrow \infty$ ; confidence 0.374

294. a130240377.png ; $T ^ { 2 }$ ; confidence 0.373

295. a01071047.png ; $n _ { j \neq i } Q _ { j } \subset Q _ { i }$ ; confidence 0.373

296. b01703046.png ; $\mathfrak { M } _ { n }$ ; confidence 0.373

297. c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372

298. a12006014.png ; $n = ( n 1 , \ldots , n _ { m } )$ ; confidence 0.372

299. a110010139.png ; $i = 1 , \dots , r$ ; confidence 0.372

300. i05302096.png ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/16. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/16&oldid=43944