Namespaces
Variants
Actions

Stochastic matrix

From Encyclopedia of Mathematics
Revision as of 19:35, 30 May 2012 by Jjg (talk | contribs) (TeX done)
Jump to: navigation, search

2020 Mathematics Subject Classification: Primary: 15B51 Secondary: 60J10 [MSN][ZBL]

A stochastic matrix is a square (possibly infinite) matrix with non-negative elements, for which \sum_j p_{ij} = 1 \quad \text{for all $i$.} The set of all stochastic matrices of order n is the convex hull of the set of n^n stochastic matrices consisting of zeros and ones. Any stochastic matrix P can be considered as the matrix of transition probabilities of a discrete Markov chain \xi^P(t).

The absolute values of the eigenvalues of stochastic matrices do not exceed 1; 1 is an eigenvalue of any stochastic matrix. If a stochastic matrix P is indecomposable (the Markov chain \xi^P(t) has one class of positive states), then 1 is a simple eigenvalue of P (i.e. it has multiplicity 1); in general, the multiplicity of the eigenvalue 1 coincides with the number of classes of positive states of the Markov chain \xi^P(t). If a stochastic matrix is indecomposable and if the class of positive states of the Markov chain has period d, then the set of all eigenvalues of P, as a set of points in the complex plane, is mapped onto itself by rotation through an angle 2\pi/d. When d=1, the stochastic matrix P and the Markov chain \xi^P(t) are called aperiodic.

The left eigenvectors \pi = \{\pi_j\} of P of finite order, corresponding to the eigenvalue 1: \begin{equation} \label{eq1} \pi_j = \sum_i \pi_i p_{ij} \quad \text{for all '"`UNIQ-MathJax23-QINU`"',} \end{equation} and satisfying the conditions \pi_j \geq 0, \sum_j\pi_j = 1, define the stationary distributions of the Markov chain \xi^P(t); in the case of an indecomposable matrix P, the stationary distribution is unique.

If P is an indecomposable aperiodic stochastic matrix of finite order, then the following limit exists: \begin{equation} \label{eq2} \lim_{n\rightarrow\infty} P^n = \Pi, \end{equation} where \Pi is the matrix all rows of which coincide with the vector \pi (see also Markov chain, ergodic; for infinite stochastic matrices P, the system of equations \ref{eq1} may have no non-zero non-negative solutions that satisfy the condition \sum_j \pi_j < \infty; in this case \Pi is the zero matrix). The rate of convergence in \ref{eq2} can be estimated by a geometric progression with any exponent \rho that has absolute value greater than the absolute values of all the eigenvalues of P other than 1.

If P = [p_{ij}] is a stochastic matrix of order n, then any of its eigenvalues \lambda satisfies the inequality (see [MM]): \left| \lambda - \omega \right| \leq 1-\omega, \quad \text{where $\omega = \min_{1 \leq i \leq n} p_{ii}.$} The union M_n of the sets of eigenvalues of all stochastic matrices of order n has been described (see [Ka]).

A stochastic matrix P=[p_{ij}] that satisfies the extra condition \sum_i p_{ij} = 1 \quad \text{for all $j$} is called a doubly-stochastic matrix. The set of doubly-stochastic matrices of order n is the convex hull of the set of n! permutation matrices of order n (i.e. doubly-stochastic matrices consisting of zeros and ones). A finite Markov chain \xi^P(t) with a doubly-stochastic matrix P has the uniform stationary distribution.

References

[G] F.R. Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1977) (Translated from Russian) MR1657129 MR0107649 MR0107648 Zbl 0927.15002 Zbl 0927.15001 Zbl 0085.01001
[B] R. Bellman, "Introduction to matrix analysis" , McGraw-Hill (1960) MR0122820 Zbl 0124.01001
[MM] M. Marcus, H. Minc, "A survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964) MR0162808 Zbl 0126.02404
[Ka] F.I. Karpelevich, "On the characteristic roots of matrices with non-negative entries" Izv. Akad. Nauk SSSR Ser. Mat. , 15 (1951) pp. 361–383 (In Russian)

Comments

Given a real n\times n matrix A with non-negative entries, the question arises whether there are invertible positive diagonal matrices D_1 and D_2 such that D_1AD_2 is a doubly-stochastic matrix, and to what extent the D_1 and D_2 are unique. Such theorems are known as DAD-theorems. They are of interest in telecommunications and statistics, [C], [F], [Kr].

A matrix A is fully decomposable if there do not exist permutation matrices P and Q such that PAQ = \left[ \begin{array}{cc} A_1 & 0 \\ B & A_2 \end{array} \right]. A 1 \times 1 matrix is fully indecomposable if it is non-zero.

Then for a non-negative square matrix A there exist positive diagonal matrices D_1 and D_2 such that D_1AD_2 is doubly stochastic if and only if there exist permutation matrices P and Q such that PAQ is a direct sum of fully indecomposable matrices [SK], [BPS].

References

[SK] R. Sinkhorn, P. Knopp, "Concerning nonnegative matrices and doubly stochastic matrices" Pacific J. Math. , 21 (1967) pp. 343–348 MR0210731 Zbl 0152.01403
[BPS] R.A. Brualdi, S.V. Parter, H. Schneider, "The diagonal equivalence of a nonnegative matrix to a stochastic matrix" J. Math. Anal. Appl. , 16 (1966) pp. 31–50 MR0206019 Zbl 0231.15017
[F] S. Fienberg, "An iterative procedure for estimation in contingency tables" Ann. Math. Stat. , 41 (1970) pp. 907–917 MR0266394 Zbl 0198.23401
[Kr] R.S. Krupp, "Properties of Kruithof's projection method" Bell Systems Techn. J. , 58 (1979) pp. 517–538
[C] I. Csiszár, "I-divergence geometry of probability distributions and minimization problems" Ann. Probab. , 3 (1975) pp. 146–158 MR0365798 Zbl 0318.60013
[Nu] R.D. Nussbaum, "Iterated nonlinear maps and Hilbert's projective method II" Memoirs Amer. Math. Soc. , 401 (1989)
[Ne] M.F. Neuts, "Structured stochastic matrices of type and their applications" , M. Dekker (1989) MR1010040 Zbl 0695.60088
[S] E. Seneta, "Non-negative matrices and Markov chains" , Springer (1981) MR2209438 Zbl 0471.60001
How to Cite This Entry:
Stochastic matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_matrix&oldid=35214
This article was adapted from an original article by A.M. Zubkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article