Struve function
The function
that satisfies the inhomogeneous Bessel equation:
The power series expansion is:
A Struve function of integral order is related to a Weber function by the following relations:
A Struve function of order ( an integer) is an elementary function, for example
When , the asymptotic expansion
holds, where is a Neumann function.
A modified Struve function is the function
Its series expansion is:
For large , the asymptotic expansion
holds, where is a modified Bessel function (cf. Bessel functions).
A Struve function is sometimes denoted by . Introduced by H. Struve [1].
References
[1] | H. Struve, Ann. Physik Chemie , 17 (1882) pp. 1008–1016 |
[2] | E. Jahnke, F. Emde, F. Lösch, "Tafeln höheren Funktionen" , Teubner (1966) |
[3] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1970) |
Comments
The Struve function can be expressed in terms of a hypergeometric function of type , cf. [a1], formula (7.5).
References
[a1] | H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953) |
[a2] | G.N. Watson, "A treatise on the theory of Bessel functions" , 1 , Cambridge Univ. Press (1952) |
Struve function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Struve_function&oldid=31327