Poincaré inequality
Poincaré inequality in ball (case )
Let f\in W^1_p(\mathbb R^n), 1\leqslant p < n and p^* = \frac{np}{n-p} then the following inequality holds \begin{equation}\label{eq:1} \Bigl(\int\limits_{B}|f(x)-f_B|^{p^*}\,dx\Bigr)^{\frac{1}{p^*}} \leqslant C\Bigl(\int\limits_{B}|\nabla f(x)|^{p}\,dx\Bigr)^{\frac{1}{p}} \end{equation} for any balls B \subset \mathbb R^n, and constant C depends only on n and p. Here f_B = \frac{1}{|B|}\int\limits_{B}f\,dx.
Poincaré inequality in ball (case 1\leqslant p < \infty)
There is a weaker inequality which is derived from \ref{eq:1} by inserting the measure of ball B and applying Hölder inequality.
\begin{equation}\label{eq:2} \frac{1}{|B|}\int\limits_{B}|f(x)-f_B|^{p}\,dx \leqslant \frac{Cr^p}{|B|}\int\limits_{B}|\nabla f(x)|^{p}\,dx, \end{equation} where r denotes the radius B.
References
[EG] | L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800 |
[JH] | J. Heinonen, "Lectures on Analysis on Metric Spaces" Springer, New York, NY, 2001. |
Poincaré inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poincar%C3%A9_inequality&oldid=28936