Namespaces
Variants
Actions

User:Richard Pinch/sandbox-7

From Encyclopedia of Mathematics
< User:Richard Pinch
Revision as of 17:06, 23 September 2016 by Richard Pinch (talk | contribs) (→‎Baer radical: cite Sapir (2014))
Jump to: navigation, search

Baer radical

of a ring $R$

The intersection of the prime ideals of the ring $R$. It is an instance of a radical: it is the lower radical determined by the class of all nilpotent rings; and the upper radical determined by the class of all primary rings.

References

  • Sapir, Mark V. "Combinatorial algebra: syntax and semantics" with contributions by Victor S. Guba and Mikhail V. Volkov. Springer Monographs in Mathematics. Springer (2014) SBN 978-3-319-08030-7 Zbl 1319.05001

Krawtchouk polynomials

Polynomials orthogonal on the finite system of $N+1$ integer points whose distribution function $\sigma(z)$ is a step function with discontinuities: $$ \sigma(x+) - \sigma(x-) = \binom{N}{x} p^x q^{N-x} \,,\ \ \ x=0,\ldots,N $$ where $\binom{\cdot}{\cdot}$ is the binomial coefficient, $p,q > 0$ and $p+q = 1$. The Krawtchouk polynomials are given by the formulas $$ P_n(x) = \left[ \binom{N}{x} \right]^{-1/2} (pq)^{-n/2} \sum_{k=0}^n (-1)^{n-k} \binom{N-x}{n-k} \binom{x}{k} p^{n-k} q^k \ . $$ Here $\binom{x}{k}$ denotes the polynomial $$ \binom{x}{k} = \frac{x(x-1)\cdots(x-k+1)}{k!} $$ of degree $k$ in $x$

The concept is due to M.F. Krawtchouk [1].

References

[1] M.F. Krawtchouk, "Sur une généralisation des polynômes d'Hermite" C.R. Acad. Sci. Paris , 189 (1929) pp. 620–622
[2] G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)


Comments

Krawtchouk polynomials can be written as hypergeometric functions of type ${}_2F_1$. The unitarity relations for the matrix elements of the irreducible unitary representations of the group $SU(2)$ can be rewritten as the orthogonality relations for the Krawtchouk polynomials, cf. [a2], [a3]. These polynomials have also an interpretation as spherical functions on wreath products of symmetric groups, cf. [a4], where $q$-Krawtchouk polynomials are also treated. Coding theorists rather (but equivalently) relate them to Hamming schemes, where Krawtchouk polynomials are used for dealing with problems about perfect codes, cf. [a1].

References

[a1] J.H. van Lint, "Introduction to coding theory" , Springer (1982)
[a2] T.H. Koornwinder, "Krawtchouk polynomials, a unification of two different group theoretic interpretations" SIAM J. Math. Anal. , 13 (1982) pp. 1011–1023
[a3] V.B. Uvarov, "Special functions of mathematical physics" , Birkhäuser (1988) (Translated from Russian)
[a4] D. Stanton, "Orthogonal polynomials and Chevalley groups" R.A. Askey (ed.) T.H. Koornwinder (ed.) W. Schempp (ed.) , Special functions: group theoretical aspects and applications , Reidel (1984) pp. 87–128

Comments

A simpler version of the polynomials may be written as $$ K_n(x) = \sum_{k=0}^n (-1)^{n-k} \binom{N-x}{n-k} \binom{x}{k} p^{n-k} q^k \ . $$ The orthogonality relation is then $$ \sum_{i=0}^n \binom{n}{i} (q-1)^i K_r(i)K_s(i) = \delta_{rs} \binom{n}{r} (q-1)^r q^n \ . $$

There is a generating function $$ \sum_{k=0}^\infty K_r(x) z^k = (1-z)^x (1 + (q-1)z)^{n-x} \ . $$



Distance enumerator

The distribution of Hamming distances between elements of a code, expressed as a polynomial. Let $C$ be a code of length $n$ over an alphabet $F$ and let $A_k$ be the number of pairs $x,y$ of words of $C$ of at Hamming distance $d(x,y) = k$. The weight enumerator $$ W_C(z) = \sum_{k=0}^n A_k z^k = \sum_{x,y \in C} z^{d(x,y)} \ . $$ It is also common to express the weight enumerator as a homogeneous binary form $$ W_C(x,y) = \sum_{k=0}^n A_k x^k y^{n-k} \ . $$

We have $W_C(0) = |C|$ and $W_C(1) = |C|^2$, where $|C|$ is the number of words in $C$.

The weight enumerator similarly expresses the distribution of Hamming weightss of elements of a code, expressed as a polynomial. Let $C$ be a code of length $n$ over an alphabet $F$ and let $A_k$ be the number of of words of $C$ of weight $k$. The weight enumerator $$ W_C(z) = \sum_{k=0}^n A_k z^k = \sum_{x \in C} z^{w(x)} $$ where $w(x)$ is the weight of the word $x$. It is also common to express the weight enumerator as a homogeneous binary form $$ W_C(x,y) = \sum_{k=0}^n A_k x^k y^{n-k} \ . $$

We have $W_C(0) = 1$ or $0$, depending on whether the zero word is in $C$ or not, and $W_C(1) = |C|$, the number of words in $C$.

The MacWilliams identities relate the weight enumerator of a linear code over a finite field $\mathbf{F}_q$ to the enumerator of the dual code $C^\perp$: $$ W_{C^\perp}(x,y) = \frac{1}{|C|} W_C(x + (q-1)y, x-y) \ . $$

References

  • Goldie, Charles M.; Pinch, Richard G.E. Communication theory, London Mathematical Society Student Texts. 20 Cambridge University Press (1991) iSBN 0-521-40456-8 Zbl 0746.94001
  • van Lint, J.H., "Introduction to coding theory" (2nd ed.) Graduate Texts in Mathematics 86 Springer (1992) ISBN 3-540-54894-7 Zbl 0747.94018
How to Cite This Entry:
Richard Pinch/sandbox-7. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-7&oldid=39274