Namespaces
Variants
Actions

Energy of measures

From Encyclopedia of Mathematics
Revision as of 12:44, 12 December 2013 by Camillo.delellis (talk | contribs) (Solved problem in TEX encoding)
Jump to: navigation, search

A concept in potential theory that is an analogue of the physical concept of the potential energy of a system of electric charges. For points of a Euclidean space , , let

\[ H(|x|) = \left\{ \begin{array}{rl} \ln\frac{1}{|x|} & \text{for } n = 2 \\ \frac{1}{|x|^{n-2}} & \text{for } n \geq 3, \end{array} \right. \] be (up to dimensional constants) the fundamental solution of the Laplace equation and let

(2)

be the Newton (for ) or logarithmic (for ) potential of a Borel measure on .

Restricting from now on to the case , one defines the mutual energy of two non-negative measures and by

(3)

Now , but it can happen that . The energy of the measure is the number , . For two measures , of arbitrary sign one can use the canonical decomposition , (or any decomposition of the form , ) and, provided these four measures have finite energy, define the mutual energy of and by

which may turn out to be negative, but

The totality of all measures with finite energy can be made into a pre-Hilbert vector space with the scalar product and the energy norm . Here the Bunyakovskii–Cauchy–Schwarz inequality holds as well as the energy principle: If , then . H. Cartan has shown that the space is not complete, but the set of non-negative measures is complete in .

Let be a compact set in , . Among all probability measures on (that is, those for which , ) there is an extremal capacitary measure with minimal energy , which is connected with the capacity of by the relation

(4)

If the potential of a measure has a square-summable gradient, then

(5)

where

is the Dirichlet norm and , . In fact, (5) remains valid for any measure , and the Dirichlet norm can be defined by an appropriate limit transition.

In the case of the plane , a direct application of (3) with the logarithmic potential (2) for the definition of the energy of measures is not possible because of the singular behaviour of the logarithmic kernel (1) at infinity. Let be a bounded domain in , , admitting a Green function , and let be a Borel measure on . When one applies Green potentials and of the form

instead of Newton potentials and in (3), one obtains for a definition of the energy of measures on that is equivalent to the one given above, but which turns out to be suitable also for , with preservation of all properties described above (and ).

References

[1] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)
[2] J. Wermer, "Potential theory" , Lect. notes in math. , 408 , Springer (1974)
[3] N.S. Landkof, "Foundations of modern potential theory" , Springer (1972) (Translated from Russian)
How to Cite This Entry:
Energy of measures. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Energy_of_measures&oldid=28050
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article