Parabolic subalgebra
p0712601.png ~/encyclopedia/old_files/data/P071/P.0701260 62 0 62 A subalgebra of a finite-dimensional Lie algebra $ \mathfrak g $ over an algebraically closed field that contains a Borel subalgebra, i.e. a maximal solvable subalgebra of $ \mathfrak g $ ( cf. also Lie algebra, solvable). If $ \mathfrak g $ is a finite-dimensional Lie algebra over an arbitrary field $ k $ , then a subalgebra $ \mathfrak p $ of it is also called a parabolic subalgebra if $ \mathfrak p \otimes _{k} \overline{k} $ is a parabolic subalgebra of $ \mathfrak g \otimes _{k} \overline{k} $ , where $ \overline{k} $ is the algebraic closure of the field $ k $ . If $ G $ is an irreducible linear algebraic group over a field of characteristic 0 and $ \mathfrak g $ is its Lie algebra, then a subalgebra $ \mathfrak p \subset \mathfrak g $ is a parabolic subalgebra in $ \mathfrak g $ if and only if it coincides with the Lie algebra of some parabolic subgroup of $ G $ .
Examples of parabolic subalgebras in the Lie algebra of all square matrices of order $ n $
over a field $ k $
are the subalgebras of type $ \mathfrak p ( \mu ) $ (
$ \mu = (m _{1} \dots m _{s} ) $
is an arbitrary set of natural numbers with sum equal to $ n $ ),
where the algebra $ \mathfrak p ( \mu ) $
consists of all upper-triangular block-diagonal matrices with as diagonal blocks square matrices of orders $ m _{1} \dots m _{s} $ .
Let $ \mathfrak g $
be a reductive finite-dimensional Lie algebra (cf. Lie algebra, reductive) over a field $ k $
of characteristic 0, let $ \mathfrak f $
be a maximal diagonalizable subalgebra of $ \mathfrak g $
over $ k $ ,
let $ R $
be the system of $ k $ -
roots of $ \mathfrak g $
relative to $ \mathfrak f $ (
cf. Root system), let $ \Delta $
be a basis (a set of simple roots) of $ R $ ,
and let $ \mathop{\rm Aut}\nolimits _{e} \ \mathfrak g $
be the group of elementary automorphisms of $ \mathfrak g $ ,
i.e. the group generated by the automorphisms of the form $ \mathop{\rm exp}\nolimits \ \mathop{\rm ad}\nolimits \ x $ ,
where $ x $
is a nilpotent element of $ \mathfrak g $ .
Then every parabolic subalgebra of the Lie algebra $ \mathfrak g $
is transformed by some automorphism from $ \mathop{\rm Aut}\nolimits _{e} \ \mathfrak g $
into one of the standard parabolic subalgebras of the type $$
\mathfrak p _ \Phi = \mathfrak g ^{0} + \sum _ {\alpha \in \Pi ( \Phi )} \mathfrak g
^ \alpha ,
$$
where $ \mathfrak g ^{0} $
is the centralizer of the subalgebra $ \mathfrak f $
in $ \mathfrak g $ ,
$ \mathfrak g ^ \alpha $
is the root subspace of the Lie algebra $ \mathfrak g $
corresponding to the root $ \alpha \in R $ ,
$ \Phi $
is an arbitrary subset of the set $ \Delta $ ,
and $ \Pi ( \Phi ) $
is the set of those roots in $ R $
whose decomposition into the sum of simple roots from $ \Delta $
contains elements of $ \Phi $
only with non-negative coefficients. In this way the number of classes of parabolic subalgebras conjugate with respect to $ \mathop{\rm Aut}\nolimits _{e} \ \mathfrak g $
turns out to be $ 2 ^{r} $ ,
where $ r = | \Delta | $
is the $ k $ -
rank of the semi-simple Lie algebra $ [ \mathfrak g ,\ \mathfrak g] $ .
In addition, if $ \Phi _{1} \subseteq \Phi _{2} $ ,
then $ \mathfrak p _ {\Phi _{1}} \supseteq \mathfrak p _ {\Phi _{2}} $ .
In particular, $ \mathfrak p _ \emptyset = \mathfrak g $ ,
and $ \mathfrak p _ \Delta $
is the minimal parabolic subalgebra of $ \mathfrak g $ .
All non-reductive maximal subalgebras of finite-dimensional reductive Lie algebras over a field of characteristic 0 are parabolic subalgebras (see [2], [3], [5]).
References
[1] | N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1975) pp. Chapts. VII-VIII MR0682756 MR0573068 MR0271276 MR0240238 MR0132805 Zbl 0329.17002 |
[2] | F.I. Karpelevich, "On non-semi-simple maximal subalgebras of semi-simple Lie algebras" Dokl. Akad. Nauk USSR , 76 (1951) pp. 775–778 (In Russian) |
[3] | V.V. Morozov, "Proof of the regularity theorem" Uspekhi Mat. Nauk , 11 (1956) pp. 191–194 (In Russian) |
[4] | G.D. Mostow, "On maximal subgroups of real Lie groups" Ann. of Math. , 74 (1961) pp. 503–517 MR0142687 Zbl 0109.02301 |
[5] | A. Borel, J. Tits, "Eléments unipotents et sous-groupes paraboliques de groupes réductifs I" Invent. Math. , 12 (1971) pp. 95–104 MR0294349 Zbl 0238.20055 |
Parabolic subalgebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parabolic_subalgebra&oldid=21904