Markov inequality
From Encyclopedia of Mathematics
for derivatives of algebraic polynomials
An equality giving an estimate of the uniform norm of the derivative in terms of the uniform norm of the polynomial itself. Let be an algebraic polynomial of degree not exceeding and let
Then for any in ,
(*) |
Inequality (*) was obtained by A.A. Markov in 1889 (see [1]). The Markov inequality is exact (best possible). Thus, for , , considering the Chebyshev polynomials
then
and inequality (*) becomes an equality.
For derivatives of arbitrary order , Markov's inequality implies that
which already for is not exact. An exact inequality for was obtained by V.A. Markov [2]:
References
[1] | A.A. Markov, "Selected works" , Moscow-Leningrad (1948) (In Russian) |
[2] | W.A. [V.A. Markov] Markoff, "Ueber die Funktionen, die in einem gegebenen Intervall möglichst wenig von Null abweichen" Math. Ann. , 77 (1916) pp. 213–258 |
[3] | I.P. Natanson, "Constructive theory of functions" , 1–2 , F. Ungar (1964–1965) (Translated from Russian) |
Comments
References
[a1] | E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982) |
[a2] | R.J. Duffin, A.C. Schaeffer, "A refinement of an inequality of the brothers Markoff" Trans. Amer. Math. Soc. , 50 (1941) pp. 517–528 |
[a3] | A. Schönhage, "Approximationstheorie" , de Gruyter (1971) |
How to Cite This Entry:
Markov inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Markov_inequality&oldid=18236
Markov inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Markov_inequality&oldid=18236
This article was adapted from an original article by N.P. KorneichukV.P. Motornyi (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article