Namespaces
Variants
Actions

Polyhedral chain

From Encyclopedia of Mathematics
Revision as of 15:34, 20 April 2014 by Ivan (talk | contribs) (TeX)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A linear expression $\sum_{i=1}^md_it_i^r$ in a region $U\subset\mathbf R^n$, where $t_i^r$ are $r$-dimensional simplices lying in $U$. By an $r$-dimensional simplex (cf. Simplex (abstract)) in $U$ one means an ordered set of $r+1$ points in $U$ whose convex hull lies in $U$. The boundary of a polyhedral chain is defined in the usual way. The concept of a polyhedral chain occupies a position intermediate between those of a simplicial chain of a triangulation of $U$ and a singular chain in $U$, but differs from the latter in the linearity of the simplices.

References

[1] P.S. Aleksandrov, "Introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)


Comments

The $r+1$ points making up a simplex are required to be in general position, i.e. they are not all contained in some $(r-1)$-dimensional affine subspace of $\mathbf R^n$.

References

[a1] L.C. Glaser, "Geometrical combinatorial topology" , 1–2 , v. Nostrand (1970)
[a2] C.R.F. Maunder, "Algebraic topology" , v. Nostrand (1972)
How to Cite This Entry:
Polyhedral chain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Polyhedral_chain&oldid=17498
This article was adapted from an original article by S.V. Matveev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article