Triangular norm
t-norm
A binary operation on the unit interval , i.e., a function such that for all the following four axioms are satisfied:
T1) (commutativity) ;
T2) (associativity) ;
T3) (monotonicity) whenever ;
T4) (boundary condition) .
If is a triangular norm, then its dual triangular co-norm is given by
A function is a triangular norm if and only if is a fully ordered commutative semi-group (cf. [a3] and -group) with neutral element and annihilator , where is the usual order on .
For each -semi-group , i.e. a semi-group in which the binary associative operation on the closed subinterval of the extended real line is continuous and one of the boundary points of acts as a neutral element and the other one as an annihilator ([a6], [a7]), there exists a continuous triangular norm or a continuous triangular co-norm such that the linear transformation given by
is an isomorphism between and either or .
The following are the four basic triangular norms, together with their dual triangular co-norms:
i) the minimum and maximum , given by
ii) the product and probabilistic sum , given by
iii) the Lukasiewicz triangular norm and Lukasiewicz triangular co-norm , given by
iv) the weakest triangular norm (or drastic product) and strongest triangular co-norm , given by
Let be a family of triangular norms and let be a family of pairwise disjoint open subintervals of the unit interval (i.e., is an at most countable index set). Consider the linear transformations given by
Then the function defined by
is a triangular norm, which is called the ordinal sum of the summands , .
The following representations hold ([a1], [a5], [a6]):
A function is a continuous Archimedean triangular norm, i.e., for all one has , if and only if there exists a continuous, strictly decreasing function with such that for all ,
The function is then called an additive generator of ; it is uniquely determined by up to a positive multiplicative constant.
is a continuous triangular norm if and only if is an ordinal sum whose summands are continuous Archimedean triangular norms.
Triangular norms are applied in many fields, such as probabilistic metric spaces [a9], [a4], fuzzy sets, fuzzy logics and their applications [a4], the theory of generalized measures [a2], [a8], functional equations [a1] and in non-linear differential and difference equations (see [a4], [a8]).
References
[a1] | J. Aczél, "Lectures on functional equations and their applications" , Acad. Press (1969) |
[a2] | D. Butnariu, E.P. Klement, "Triangular norm-based measures and games with fuzzy coalitions" , Kluwer Acad. Publ. (1993) |
[a3] | L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963) Zbl 0137.02001 |
[a4] | E.P. Klement, R. Mesiar, E. Pap, "Triangular norms" Trends in Logic--Studia Logica Library 8 Kluwer Academic ISBN 0-7923-6416-3 Zbl 0972.03002 |
[a5] | C.M. Ling, "Representation of associative functions" Publ. Math. Debrecen , 12 (1965) pp. 189–212 |
[a6] | P.S. Mostert, A.L. Shields, "On the structure of semigroups on a compact manifold with boundary" Ann. of Math. , 65 (1957) pp. 117–143 |
[a7] | A.B. Paalman-de Miranda, "Topological semigroups" , Tracts , 11 , Math. Centre Amsterdam (1970) |
[a8] | E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995) |
[a9] | B. Schweizer, A. Sklar, "Probabilistic metric spaces" , North-Holland (1983) |
Triangular norm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Triangular_norm&oldid=14429