Ellipsoidal coordinates
spatial elliptic coordinates
The numbers
,
and
connected with Cartesian rectangular coordinates
,
and
by the formulas
![]() |
![]() |
![]() |
where
. The coordinate surfaces are (see Fig.): ellipses
, one-sheet hyperbolas (
), and two-sheet hyperbolas (
), with centres at the coordinate origin.
Figure: e035420a
The system of ellipsoidal coordinates is orthogonal. To every triple of numbers
,
and
correspond 8 points (one in each octant), which are symmetric to each other relative to the coordinate planes of the system
.
The Lamé coefficients are
![]() |
![]() |
![]() |
If one of the conditions
in the definition of ellipsoidal coordinates is replaced by an equality, then degenerate ellipsoidal coordinate systems are obtained.
Comments
References
| [a1] | G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18 |
| [a2] | Harold Jeffreys, Bertha Jeffreys, Methods of Mathematical Physics, 3rd edition, Cambridge University Press (1972) Zbl 0238.00004 |
Ellipsoidal coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ellipsoidal_coordinates&oldid=14024





