K-space
From Encyclopedia of Mathematics
Kantorovich space
An ordered complete vector space, i.e. a semi-ordered vector space (cf. Semi-ordered space) in which every set that is bounded from above has a supremum. This notion was introduced by L.V. Kantorovich [1].
References
[1] | L.V. Kantorovich, "Lineare halbgeordnete Räume" Mat. Sb. , 2 (1937) pp. 121–165 |
Comments
References
[a1] | H. Freudenthal, "Teilweise geordnete Moduln" Proc. K. Ned. Akad. Wetensch. Amsterdam , 39 (1936) pp. 641–651 |
[a2] | F. Riesz, "Sur quelques notions fondamentales dans la théorie générale des opérations linéaires" Ann. of Math. , 41 (1940) pp. 174–206 |
[a3] | S.W.P. Steen, "An introduction to the theory of operators I" Proc. London Math. Soc. (2) , 41 (1936) pp. 361–392 |
[a4] | W.A.J. Luxemburg, A.C. Zaanen, "Riesz spaces" , I , North-Holland (1971) |
[a5] | A.C. Zaanen, "Riesz spaces" , II , North-Holland (1983) |
[a6] | H.H. Schaefer, "Banach lattices and positive operators" , Springer (1974) |
[a7] | B.Z. Vulikh, "Introduction to the theory of partially ordered spaces" , Wolters-Noordhoff (1967) (Translated from Russian) |
How to Cite This Entry:
K-space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=K-space&oldid=13152
K-space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=K-space&oldid=13152
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article