Weierstrass point
A point on an algebraic curve (or on a Riemann surface) of genus at which the following condition is satisfied: There exists a non-constant rational function on which has at this point a pole of order not exceeding and which has no singularities at other points of . Only a finite number of Weierstrass points can exist on , and if is 0 or 1, there are no such points at all, while if , Weierstrass points must exist. These results were obtained for Riemann surfaces by K. Weierstrass. For algebraic curves of genus there always exist at least Weierstrass points, and only hyper-elliptic curves of genus have exactly Weierstrass points. The upper bound on the number of Weierstrass points is . The presence of a Weierstrass point on an algebraic curve of genus ensures the existence of a morphism of degree not exceeding from the curve onto the projective line .
References
[1] | N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian) |
[2] | G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 MR0092855 Zbl 0078.06602 |
Comments
References
[a1] | P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) MR0507725 Zbl 0408.14001 |
[a2] | E. Arbarello, M. Cornalba, P.A. Griffiths, J.E. Harris, "Geometry of algebraic curves" , 1 , Springer (1985) MR0770932 Zbl 0559.14017 |
[a3] | R.C. Gunning, "Lectures on Riemann surfaces" , Princeton Univ. Press (1966) MR0207977 Zbl 0175.36801 |
Weierstrass point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weierstrass_point&oldid=12917