Namespaces
Variants
Actions

Polynomial least deviating from zero

From Encyclopedia of Mathematics
Revision as of 14:40, 14 September 2014 by Ivan (talk | contribs) (TeX)
Jump to: navigation, search

polynomial deviating least from zero

An algebraic polynomial of degree , with leading coefficient 1, having minimal norm in the space C[a,b] or L_p[a,b].

P.L. Chebyshev [1] proved that, among all polynomials of the form

Q_n(x)=x^n+a_1x^{n-1}+\ldots+a_n,\tag{1}

there is exactly one, viz.

T_n(x)=2\left(\frac{b-a}{4}\right)^n\cos n\arccos\left(\frac{2x-a-b}{b-a}\right),

of minimal norm in C[a,b], and that norm is

\|T_n\|_{C[a,b]}=2\left(\frac{b-a}{4}\right)^n.

The polynomial

U_n(x)=2\left(\frac{b-a}{4}\right)^{n+1}\frac{\sin((n+1)\arccos(2x-a-b)/(b-a))}{\sqrt{(b-x)(x-a)}}

is the unique polynomial deviating least from zero in L_1[a,b] (among all polynomials \ref{1}), and its norm is

\|U_n\|_{L_1[a,b]}=4\left(\frac{b-a}{4}\right)^{n+1}.

In L_p[a,b], 1<p<\infty, there also exists a unique polynomial deviating least from zero; various properties of this polynomial are known (see [2], [5]).

The integral

\int\limits_a^bQ_n^2(x)\rho(x)dx,\quad\rho(x)>0,\tag{2}

considered for all polynomials \ref{1}, is minimal if and only if Q_n(x), with respect to the weight function \rho(x), is orthogonal on (a,b) to all polynomials of degree n-1. If

a=-1,\quad b=1,\quad\rho(x)=(1-x)^\alpha(1+x)^\beta,

where \alpha,\beta>-1, then the integral \ref{2} is minimized by the Jacobi polynomial (cf. Jacobi polynomials) (if \alpha=\beta=0 by the Legendre polynomial; cf. Legendre polynomials) of degree n with leading coefficient 1.

Among all trigonometric polynomials of the form

a\cos nx+b\sin nx+\sum_{k=0}^{n-1}(a_k\cos kx+b_k\sin kx),

where a and b are fixed, the polynomial of minimal norm in any of the spaces C[0,2\pi] and L_p[0,2\pi] (for an arbitrary p\geq1) is

a\cos nx+b\sin nx.

References

[1] P.L. Chebyshev, "Complete collected works" , 2 , Moscow-Leningrad (1947) pp. 23–51 (In Russian)
[2] V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)
[3] A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) (Translated from Russian)
[4] G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)
[5] S.M. Nikol'skii, "Quadrature formulas" , Hindushtan Publ. Comp. , London (1964) (Translated from Russian)
[6] P.K. Suetin, "Classical orthogonal polynomials" , Moscow (1976) (In Russian)


Comments

The polynomials T_n and U_n are called (normalized) Chebyshev polynomials of the first, respectively second, kind (cf. Chebyshev polynomials).

References

[a1] I.P. Natanson, "Constructive function theory" , 2 , F. Ungar (1964–1965) pp. Chapt. 6 (Translated from Russian)
[a2] T.J. Rivlin, "The Chebyshev polynomials" , Wiley (1974)
[a3] M.J.D. Powell, "Approximation theory and methods" , Cambridge Univ. Press (1981)
How to Cite This Entry:
Polynomial least deviating from zero. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Polynomial_least_deviating_from_zero&oldid=12323
This article was adapted from an original article by N.P. KorneichukV.P. Motornyi (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article