Namespaces
Variants
Actions

Entropy of a measurable decomposition

From Encyclopedia of Mathematics
Revision as of 08:36, 29 August 2014 by Ivan (talk | contribs) (TeX)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

$\xi$ of a space with a normalized measure $(X,\mu)$

A concept defined as follows. If the elements of $\xi$ having measure zero form in total a set of positive measure, then the entropy of $\xi$ is $H(\xi)=\infty$; otherwise

$$H(\xi)=-\sum\mu(C)\log\mu(C),$$

where the sum is taken over all elements of $\xi$ of positive measure. The logarithm is usually to the base 2.


Comments

Instead of "measurable decomposition" the phrase "measurable partitionmeasurable partition" is often used, cf. [a1].

References

[a1] I.P. [I.P. Kornfel'd] Cornfel'd, S.V. Fomin, Ya.G. Sinai, "Ergodic theory" , Springer (1982) (Translated from Russian)
How to Cite This Entry:
Entropy of a measurable decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Entropy_of_a_measurable_decomposition&oldid=12139
This article was adapted from an original article by D.V. Anosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article